

Quantitative Software Management, Inc. 2000 Corporate Ridge, Suite 700 Mclean, VA 22102 703.790.0055 • 703.749.3795 (fax) info@qsm.com • www.qsm.com

FUNCTION POINT ANALYSIS OVER THE YEARS

© Quantitative Software Management, Inc.

Background

- QSM has a large software project database with more than 10,000 entries collected over 35 years
 - Many projects sized in IFPUG function points
- QSM frequently performs benchmark and productivity studies for customers
- Wanted to examine projects sized in function points completed since 2000 focusing on
 - Demographics
 - Productivity
 - Effort
 - Schedule

- Staffing
- Impact of analysis and design
- Trends over time

Process

- Extract all FP projects completed since 2000
- Select projects that have schedule and effort from the beginning of Analysis up until implementation into production
- Cull out suspect projects (extreme outliers & projects with incomplete or contradictory data)
- Resulting sample size 2,231 projects
- All projects reported IFPUG function points (No NESMA, COSMIC, or Mark II)
- Analysis done on unadjusted function points

Demographics

- 20 countries represented (U.S., Europe, Canada, Brasil, Australia largest contributors)
- 43 companies/organizations
- What does the "typical" project look like?
 - Business IT (98% of sample)
 - Median size 160 UFP
 - Median schedule (analysis to implementation) 7.03 mths
 - Median effort 21.85 person mths. (3,496 phrs at 160 phr/pm)
 - Average staff 2.3 FTE
 - Labor cost \$262,200 at \$75/hr. and 160 hrs./mth.
 - 13% of effort spent in high level analysis & design

Project Size Distribution

1/3 of projects **Project Size Distribution** smaller than 100 FP 600 492 500 400 304 269 300 216 204 171 160 200 159 102 97 100 57 0 1001.2000 151-200. 51:100 101.150 251-300 501-100 201-250 301.00 401-500 72000 ~5° Smaller projects are the norm. There are fewer projects between 500 and 1000 FP than there are between 150 and 200

Project Effort Distribution

Project Size & Effort Distribution					
Function Points	% Projects	% Effort			
<=100	34%	11%			
101 - 200	23%	14%			
201 - 300	14%	14%			
301 - 500	12%	14%			
501 - 1000	9%	16%			
1001 - 2000	4%	13%			
Larger	3%	17%			

Although the largest projects make up only a small percentage of the total, their overall cost/effort is greater than any other size category

Project Types and Distribution

- QSM classifies software development projects by the ratio of new code to modified, deleted, and reused code:
- New development (> 75% new functionality)
- Major enhancement (25% 75% new functionality)
- Minor enhancement (5% 25% new functionality)
- Conversion (< 5% new functionality)
- Maintenance

Project Types and Distribution

	New	Major	Minor		
	Development	Enhancement	Enhancement	Conversion	Maintenance
Percent of Projects	16%	61%	14%	7%	2%
Median Pl	14.0	10.1	11.2	9.9	10.4
Median size (FP)	291	119	153	109	68
Median effort mont	29.7	19.3	28.1	23.4	18.6
Median % Funct Eff	12%	11%	12%	10%	19%
Median FP/PM	9.16	5.79	5.19	5.06	2.70
Median Duration	7.57	7.23	6.42	6.43	4.73
Median Defects	37.00	16.00	38.50	35.00	16.00

- 75% of the projects are enhancements
- The development types vary in size, productivity, and quality

Productivity: The Role of Size

Productivity by Size Category					
Size (FP)	Count	FP/PM (Median)			
<=50	269	3.49			
51-100	492	5.13			
101-150	304	6.54			
151-200	216	6.67			
201-250	160	7.65			
251-300	159	8.49			
301-400	171	9.55			
401-500	102	9.72			
501-1000	204	13.43			
1001-2000	97	16.29			
>2000	57	23.10			

Productivity: The Role of Size

Why Are Larger Projects More Productive?

- More important to organizations
 - Higher visibility
 - May benefit from better leadership and more skilled resources
 - Scalability issues with smaller projects?
- However
 - More likely to be cancelled
 - Productivity only calculated from completed projects
 - Inefficient smaller projects may be allowed to complete

Project Effort

Effort	Project Count	% of Projects	FP/PM (Median)	Median Size (FP)
<=10 PM	487	21.83%	11.6	72
>10 <=20	551	24.70%	7.86	113
>20 <=30	323	14.48%	5.87	139
>30 <=40	194	8.70%	5.65	194
>40 <=50	127	5.69%	5.44	247
>50 <=60	109	4.89%	5.32	301
>60 <=70	67	3.00%	4.45	292
>70 <=80	60	2.69%	4.73	348
>80 <=90	38	1.70%	3.45	292
>90 <=100	30	1.34%	3.32	312
>100 <=150	102	4.57%	3.12	359
>150 <=200	52	2.33%	3.44	606
>200 <=300	45	2.02%	2.66	597
>300 <=400	12	0.54%	3.13	1,041
>400 <=500	13	0.58%	3.33	1,477
>500 <=1000	14	0.63%	3.11	1,989
>1000	7	0.31%	2.55	3500

Project Effort

Median effort varies by project type. Median effort for new development and minor enhancements is nearly the same while new development projects are nearly twice as large

Project Schedule Distribution

Project Duration Ρ 300 r С Ο 250 Ο j u е 200 n е t 150 С t 100 50 0 <=2 ഹ 10 \sim 4 9 \sim ω б 11 12 13 14 15 16 1819 20 24 17 24 ı. 1 Т Т Т ı. Т 10 ī ı Т Т Т Т Т Т Т Т Т \sim Μ 4 ഹ 9 ω ٨ \sim 20 12 m 16 σ 11 4 15 17 18 19 **Calendar Months** 50% of FP projects complete within 7 months •

- 70% complete within 9 months
- 85% complete within 1 year

The Intelligence behind Successful Software Projects

Project Schedule The Impact of Compression

Average Productivity vs. Schedule Deviation

Productivity Rates (FP/PM) Smallest to Largest Staffing Quartiles						
Size Range (FP)	Lowest Staffing Quartile		Highest Staffing Quartile		Productivity Ratio	
	Productivity (FP/PM)	Median Staff (FTE)	Productivity (FP/PM)	Median Staff (FTE)		
1-100	7.17	0.86	2.57	2.53	2.77 to 1	
101-200	13.68	1.19	2.83	4.41	4.83 to 1	
201-300	17.44	1.59	3.15	6.62	5.54 to 1	
301-500	27.15	1.73	3.96	7.47	7 6.86 to 1	
501-1000	34.96	1.76	4.35	10.95	8.04 to 1	
>1000	45.29	2.86	5.76	15.04	7.86 to 1	

Lower staffing levels are associated with higher productivity. Projects in the lowest staffing quartile are between 277% and 804% more productive than projects in the highest staffing quartile.

But, schedule is often the primary project constraint. Don't lower staffing levels have a negative impact on schedule?

The Intelligence behind Successful Software Projects

(#17) 12/5/2013

Average Schedule Months by Staffing Quartile

(#18) 12/5/2013

Impact of Analysis and Design

Projects that invested 20% or more of their total effort in analysis and design completed sooner, required less total effort, were more productive, and had fewer defects

Comparison at 20% Design Effort				
Medians		% Difference		
PI <= 20%	11.04			
PI > 20%	14.19	29%		
FP/PM <= 20%	6.20			
FP/PM > 20%	7.93	28%		
Duration <= 20%	7.23			
Duration >20%	6.20	-17%		
Total Effort <=20%	22.59			
Total Effort > 20%	20.29	-11%		
Average staff <= 20%	2.34			
Average staff > 20%	2.50	7%		
FP size <= 20%	157.00			
FP size > 20%	171.00	9%		
Defects <= 20%	20.00			
Defects > 20%	19.50	-3%		

Trends over Time

Languages

Top 10 Software Languages					
1990-1994	1995-1999	2000-2004	2005 +		
COBOL	COBOL	COBOL	JAVA		
PL/1	POWERBUILDER	JAVA	COBOL		
NATURAL	С	PL/1	IEF/COOL:GEN		
TELON	C++	C++	PL/1		
SQL FORMS	VISUAL BASIC	VISUAL BASIC	Cognos Impromptu Scripts		
C++	SQL FORMS	IEF/COOL:GEN	PACBASE		
С	SQL	POWERBUILDER	.net		
ASSEMBLER	PL/1	Oracle SQL Forms	LOTUS NOTE		
CLIPPER	IEF/COOL:GEN	SQL	C++		
IDEAL	ORACLE	Datastage Basic	J2EE		

Evidently, there is still a place in the software world for old COBOL programmers

There has also been an increase in "hybrid" projects using, for example, both Java and COBOL as legacy systems are adapted to the Web

Trends over Time Productivity

Median Productivity							
	1990-1994 1995-1999 2000-2004						
FP/PM	11.10	17.00	9.21	5.84			
FP/Mth	17.10	63.90	29.74	22.10			
PI	15.3	16.4	13.9	10.95			
Size (FP)	394.0	167.0	205	144			

Why has productivity decreased?

- Projects are much smaller
- Re-usable components
- Package implementations where the principal work is configuration
- Has the technical complexity of projects increased?

Trends over Time Schedule and Effort

Median Schedule and Effort							
	1990-1994 1995-1999 2000-2004 2005 -						
Duration (Mths)	10.06	6.67	6.57	7.13			
Effort (Person Mths)	32.00	26.45	23.0	21.6			

- Project duration has been relatively stable since the mid 90's
- Overall project effort has continued to decrease

Recommendations for Improvement

- Bundle smaller projects together and manage them as a single project
 - 1/3 of projects are smaller than 100 FP
 - The productivity of projects in the 250 300 FP range is nearly twice as high (See slide 8)

• Relax the schedule

 There is a 33% productivity improvement for projects if they move from slight schedule compression (.5 standard deviations below average) to .5 above average. (See slide 14)

Staff sparingly

 Staffing levels have little impact on schedule; but do impact cost & quality (negatively)

Summary

- Function points have "staying power" and are widely used: principally to count business IT systems
- Project size has decreased and is now half as large as it was 20 years ago
- 75% of function point projects modify existing systems
- Projects deliver faster and expend less effort than they did 20 years ago
- Productivity measured in FP per person month or hours per FP has dropped since the year 2000

Summary

- The factors that have the most pronounced impact on software project productivity and quality are the result of management choices:
 - How much functionality (size) to include in a project
 - Staffing strategy
 - Time and effort allocated to analysis and design
 - Schedule (compressed or relaxed)

Contact Information

- <u>don.beckett@qsm.com</u>
- (360) 638-0097

Supplementary Slides

(#27) 12/5/2013

Median Schedule Months by Staffing Quartile					
Size (FP)	Smallest	2nd	3rd	Largest	
<= 100	5.75	6.10	5.90	5.77	
101 - 200	6.48	7.10	6.80	6.70	
201 - 300	6.85	7.03	7.85	7.07	
301 - 500	7.45	6.97	8.22	8.17	
501 - 1000	7.77	7.33	8.30	9.10	
Larger	7.53	11.03	9.15	11.72	

Increased staffing levels do not correlate with shorter schedules

Average Schedule Months by Staffing Quartile					
Size (FP)	Smallest	2nd	3rd	Largest	
<= 100	6.44	6.70	6.41	6.47	
101 - 200	7.41	7.75	7.71	7.13	
201 - 300	8.28	7.86	8.16	8.05	
301 - 500	8.45	8.37	8.42	8.77	
501 - 1000	9.41	10.09	10.22	9.46	
Larger	9.67	12.14	10.62	13.02	

