
1



2



In the push towards Continuous Integration / Continuous Delivery (CI/CD) of military software engineering, 
time-to-market objectives have been supplemented with ongoing oversight and control. The Defense Science 
Board (DSB) recommended in their final report (Feb, 2018) that a “software factory” concept be emphasized 
in the source selection process. To support this concept and the digital transformation of reliability and 
maintainability (R&M), contractors will need to enable and begin to practice CI/CD to stay competitive on 
DoD development programs. Measurement, modeling and analysis techniques can be leveraged to ensure 
software development efforts meet reliability expectations while practicing CI/CD.

Program managers tend to think about the reliability of their software only when the customer finds defects 
in the field, causing delays and monetary impact. Because software defects are the fundamental drivers of 
software product reliability, it stands to reason that routine predictive modeling of software reliability would 
benefit all stakeholders.

Estimating and forecasting software reliability requires some specialized methods (e.g., curve-fitting, 
estimation models), and should be leveraged to explore the impact on software quality and/or reliability 
before a product development effort begins (or periodically throughout the development lifecycle). This 
paper explains some models in use and shares actual examples of DoD programs making use of this 
functionality to predict field reliability of software programs.

3



CI/CD Defined: “In very simple terms, CI is a modern software development practice in which incremental 

code changes are made frequently and reliably. Automated build-and-test steps triggered by CI ensure that 

code changes being merged into the repository are reliable. The code is then delivered quickly and seamlessly 

as a part of the CD process. In the software world, the CI/CD pipeline refers to the automation that enables 

incremental code changes from developers’ desktops to be delivered quickly and reliably to production.” 

Source: Synopsys.com

Software Factory Objectives: “Software factory–based application development addresses the problem of 

traditional application development where applications are developed and delivered without taking 

advantage of the knowledge gained and the assets produced from developing similar applications. Many 

approaches, such as training, documentation, and frameworks, are used to address this problem; however, 

using these approaches to consistently apply the valuable knowledge previously gained during development 

of multiple applications can be an inefficient and error-prone process. Software factories address this 

problem by encoding proven practices for developing a specific style of application within a package of 

integrated guidance that is easy for project teams to adopt. Developing applications using a suitable software 

factory can provide many benefits, such as improved productivity, quality and evolution capability.” Source: 

Wikipedia.org

4



Software reliability is one of several characteristics which are knowingly or unknowingly traded off for time-
to-market, cost, effort or functionality. All too often, reliability is short-changed.

Image Credit: Anton Petrus - stock.adobe.com

5



Rayleigh Model provides the time series projections for staffing, effort, cost, code construction and defects 

for a given estimation scenario. It is the optimal approach to match effort expenditure to the way the 

problem is ready to be solved. Rayleigh is one of the Weibull family of reliability functions.

Once a project is under way and the first defect counts begin to roll in, what is the most effective way to use 
that information? The best method will involve metrics that are easy to capture and interpret and allow the 
project to produce reliable and repeatable reliability forecasts. The methods outlined in this article have been 
in use for more than three decades and have worked well for organizations at all levels of process maturity 
and development capability. 

Defect prediction models can be broadly classified as either static or dynamic. Both have advantages and may 
be useful at various points in the lifecycle. Static models use final defect counts from completed projects to 
estimate the number of defects in future projects. Dynamic models use actual defect discovery rates over 
time (defects per week or month) from an ongoing project to forecast. 

Research performed by Lawrence H. Putnam, Sr. (Putnam and Myers) shows that defect rates follow a 
predictable pattern over the project lifecycle. Initially, staffing is relatively low and few project tasks have 
been completed. Defect creation and discovery increase or decrease as a function of effort and work 
completion. As people are added to the project and the volume of completed code grows, the defect 
discovery rate rises to a peak and then declines as work tails off and the project approaches the desired 
reliability goals. This characteristic pattern is well described by the Weibull family of curves (which includes 
the Rayleigh model used in SLIM®) 

6



7



Example from actual helo estimate (partial)

Build A_001 – Copy.sew (Second Cut PM Plan: Build C)

8



Defect rates have another useful aspect; they can be used to calculate the MTTD. MTTD is analogous to Mean 
Time to Failure. It measures reliability from the user’s perspective at a given point in time, typically when the 
system is put into production for the first time. Though more complicated methods exist, it can be calculated 
quickly simply using the following formula (QSM, Inc.): 

“To calculate MTTD, take the reciprocal of the number of defects during this month and multiply by 
4.333 (weeks per month) and the days per week for the operational environment. For example, if 
there were five errors during the first month of operation and the system runs seven days per week, 
the average MTTD value would be (1/5) * 4.333 * 7 = 6.07 days between defects. If there are no 
defects in the first month, the MTTD in the first month cannot be calculated.” 

MTTD makes it possible to compare the average time between defect discoveries to the software’s required 

mission profile and predict when the software will be reliable enough to be put into production. Mission-

critical or high-reliability software should have a higher Mean Time to Defect than a typical IT application. 

Software that must run 24 hours a day and seven days a week requires a higher Mean Time to Defect than 

software that is only used for eight hours a day from Monday to Friday. MTTD considers all these factors 

explicitly.

9



Example from actual TBD estimate (partial)

10



MATCHING RELIABILITY STANDARDS TO THE MISSION PROFILE

How should organizations determine the right reliability standard for each project? A good place to start is by 

asking, “What does the software do?” and “How reliable do we need it to be?” Defect rates, taken in 

isolation, aren’t terribly helpful in this regard. Software developers need to know how long the software 

should run in production before users encounter defects of various severities.

MTTD can be customized to reflect the project’s unique mission profile. The mission profile, in turn, can 

depend on a variety of factors. Required reliability for onboard navigation software aboard a fighter jet may 

depend on how long it can stay in the air before refueling. For other types of software, human considerations 

like time on shift or time until a unit is relieved determine the required reliability. Different types of software 

will have different mission profiles. A flight management system may be operational 24 hours per day, seven 

days per week, 60 minutes per hour, and 60 seconds per minute. A billing application for a doctor’s office, on 

the other hand, may only be required to operate eight hours a day, five days a week. Because the flight 

system operates continuously for a longer period of time, it requires a higher reliability (or MTTD). 39

Finally, MTTD can be calculated for total defects or customized to reflect only high-priority defects. End users 

may not care how long the system runs between cosmetic errors but for mission-critical applications, 

increasing the average time between serious and critical errors can literally mean the difference between life 

and death.

11



12


