
History is the Key to Estimation Success
By Kate Armel, QSM

It was late afternoon in April of 1999 when the phone in my
office rang. The conversation went something like this:

“This software estimate just landed on my desk and I
need to finish it by close of business today to support a fixed
price bid.”

“What can you tell me about this project?”

“We’re rewriting an existing mainframe billing system
developed in COBOL. The new system will be written in
C++, so it should be much smaller than the old system.”

“Great –perhaps we can use the existing system as a rough
baseline. How big is it?”

“I don’t have that information.”

“Will this be a straight rewrite, or will you add new
features?”

“Not sure – the requirements are still being fleshed out.”

“What about resources? How many people do you have
on hand?”

“Not sure – the team size will depend on how much work
must be done... which we don’t know yet.”

“Can we use some completed projects to assess your
development capability?”

“Sorry, we don’t have any history.”

“That’s OK –even without detailed information on scope,
resources, or productivity we should still be able to produce

a rough order of magnitude estimate based on
relevant industry data.”

“Rough order of magnitude??? My boss will
never accept that much risk on a fixed price
bid! Isn’t there some general rule of thumb we
can apply?”

Welcome to the world of software cost estimation where the
things we know – the known knowns - are often outweighed by
the things we don’t know. Numerous estimation methods exist.
Scope is described using effort, delivered code volume, features,
or function points. Expert judgment, Wideband Delphi, top
down, bottom up, parametric and algorithmic models each
have their determined champions. But regardless of method, all
estimates are vulnerable to risk arising from uncertain inputs,
requirements changes, and scope creep. Skilled estimators and
better methods can reduce this risk, but they can’t eliminate
it. Thus, the ability to identify and account for uncertainty
remains a vital component of successful risk management.

Estimation Accuracy vs. Estimation Usefulness
How accurate is the average software cost estimate? Industry

statistics vary as widely as the estimates they seek to measure.
One oft-cited study – the Standish Group’s Chaos Report –
concludes that only one third of software projects deliver the
promised functionality on time and within budget1. A later
IEEE study2 noted several gaps in the Standish Group’s criteria
for estimation accuracy:

…the [Standish] definitions don’t cover all
possibilities. For instance, a project that’s within
budget and time but that has less functionality
doesn’t fit any category. … The Standish Group’s
measures … neglect under runs for cost and time
and over runs for the amount of functionality.

When studies rely on different definitions of estimation
success or failure, we should expect their assessments of
estimation accuracy to exhibit considerable variability. The
existence of different standards raises an intriguing question:
what makes an estimate “accurate”?

There are known unknowns…
But there are also unknown unknowns,
The ones we don’t know
We don’t know.

—Secretary of Defense Donald Rumsfeld, February 2002

[]

Journal of Software Technology 15-1 February 2012: Cost Estimation and Systems Acquisition16

HISTORY IS THE KEY TO ESTIMATION SUCCESS (CONT.)

Most quality control measures for estimates
compare estimated cost/eff ort, schedule, or scope
to their actual (fi nal) values. Th e problem with this
formulation is that “accurate” estimates are an integral
part of feasibility decisions made very early in the
project lifecycle; long before anything but the most
generic information about the system’s intended
features or use can be known with reasonable
certainty. Th e technologies used to implement the
requirements may be unknown and the schedule,
team size, required skill mix, and project plan have
yet to be determined. As design and coding progress,
the list of unknowns grows shorter and decreasing
uncertainty about the estimation inputs lowers the
risk surrounding the estimated cost, schedule, and
scope. Unfortunately, most organizations must make
binding commitments before detailed and reliable
information about the project is available.

Given the degree of uncertainty surrounding early
estimates – and the correspondingly broad range of possible
time/eff ort/scope combinations - estimation accuracy may be
less important than estimation usefulness. In an article for the
ACM, Philip Armour explores the diff erence between these
two concepts3:

The commitment is the point along the estimate
probability distribution curve where we promise the
customer and assign resources. Th is is what we need to hit,
at least most of the time. It is not a technical estimation
activity at all but is a risk/return based business activity. It
is founded on the information obtained from the estimate,
but is not the estimate. Using Figure 3 as an example,
if we needed an accurate commitment in the earliest
(Initial Concept) phase based on how the diagram shows
the project actually worked out, we
would have had to commit at around
a 75% probability. From the fi gure,
committing to the “expected” result
at Initial Concept would have led
to a signifi cant overrun beyond that
commitment, and the project would
have “failed.” We can consider the
50% (expected) result to represent
the cost of the project and the 25%
increment to the higher commitment
level to represent the cost of the risk
of the project.

Measures of estimation accuracy that treat an estimate as
“wrong” or a project as “failed” whenever the fi nal scope,
schedule, or cost diff er from their estimated values penalize
estimators for something outside their control: the uncertainty
that comes from incomplete information. We should measure
deviations between estimated and actual project outcomes
because this information helps us quantify estimation
uncertainty and account for it in future estimates. But if
measurement becomes a stick used to punish estimators, they
will have little incentive to collect and use metrics to improve
future estimates.

Understanding and Assessing Tradeoff s
An old project management maxim succinctly summarizes

the choices facing software development organizations: “You
can have it fast, cheap, or good. Pick two.”
Given that estimates (and therefore,
commitments) are made early in the
project lifecycle when uncertainty is high
and the range of possible solutions is
still wide, how do we select plans with a
high probability of success? A thorough
understanding of management tradeoff s
can help. Th e idea behind the infamous
Project Management Triangle is simple
but powerful: the tradeoffs between
software schedule, eff ort or cost, and
quality are both real and unforgiving.
Th anks to the work of pioneers like Fred

Data & Analysis Center for Software (DACS) 17

HISTORY IS THE KEY TO ESTIMATION SUCCESS (CONT.)

Brooks, most software professionals now accept the existence
and validity of these tradeoffs but as Brooks himself once
ruefully observed, quoting famous maxims is no substitute
for managing by them.

With so many unknowns out there, why don’t we make
better use of what we do know? Most software “failures” are
attributable to the human penchant for unfounded optimism.
Under pressure to win business, organizations blithely set
aside carefully constructed estimates and ignore sober risk
assessments in favor of plans that just happen to match what
the company needs to bid to secure new business. Lured by
the siren song of the latest tools and methods, it becomes all
too easy to elevate future hopes over past experience. This
behavior is hardly unique to software development. Recently
two economists (Carmen Reinhart and Kenneth Rogoff) cited
this tendency to unfounded optimism as one of the primary
causes of the 2008 global financial crisis. Their exhaustive
study of events leading up to the crash provides powerful
evidence that optimism caused both banks and regulators
to dismiss centuries-old banking practices. They dubbed
this phenomenon the “This Time Is Different” mentality4.
Citing an extensive database of information gleaned from
eight centuries of sovereign financial crises, bank panics, and
government defaults, Reinhart and Rogoff illustrate a pattern
that should be depressingly familiar to software professionals:
without constant reminders of
past experiences, our natural
optimism bias makes us prone
to underestimate risk and
overestimate the likelihood of
positive outcomes.

The best counter to unfounded
optimism is the sobering
voice of history, preferably
supported by ample empirical
evidence. This is where a large
historical database can provide
valuable perspective on current
events. Software development
is full of complex, nonlinear
tradeoffs between time, effort,
and quality. Because these
relationships are nonlinear, a
20% reduction in schedule or
effort can have vastly different
effects at different points along
the size spectrum. We know

this, but the human mind is poorly equipped to account for
non-intuitive exponential relationships on the fly.

Without historical data, estimators must rely on experience
or expert judgment when assessing the potential effects of small
changes to effort, schedule, or scope on an estimate. They can
guess what effect such changes might have, but they cannot
empirically prove that a change of the same magnitude may be
beneficial in one case but disastrous in another. The presence
of an empirical baseline removes much of the uncertainty
and subjectivity from the evaluation of management metrics,
allowing the estimator to leverage tradeoffs and negotiate more
achievable (hence, less risky) project outcomes. One of the
most powerful of these project levers is staffing. A recent study
of projects from the QSM database5 used 1060 IT projects
completed between 2005 and 2011 to show that small changes
to a project’s team size or schedule dramatically affect the final
cost and quality. To demonstrate the power of the time/effort
tradeoff, projects were divided into two “staffing bins”:

•	 Projects that used small teams of 4 or fewer FTE staff
•	 Projects that used large teams of 5 or more FTE staff.

The size bins span the median team size of 4.6, producing
roughly equal samples covering the same size range with no
overlap in team size. Median team size was 8.5 for the large

Construct & Test Avg. Staff vs. System Size

0.1 1 10 100 1,000
Effective SLOC (thousands)

0.1

1

10

100

C&
T Average Staff (People)

Median team size,
small team strategy: 2.1

Median team size,
large team strategy: 8.5

Median team size,
small team strategy: 2.1

Median team size,
large team strategy: 8.5

Small Teams Large Teams Avg. Line Style

Journal of Software Technology 15-1 February 2012: Cost Estimation and Systems Acquisition18

team projects and 2.1 for the small team projects, making the ratio of large median to small median staff approximately 4 to
1. The wide range of staffing strategies for projects of the same size is a vivid reminder that team size is highly variable, even
for projects of the same size. It stands to reason that managers who add or remove staff from a project need to understand the
implications of such decisions.

Regression trends were run through each sample to determine the average Construct & Test effort, schedule, and quality
at various points along the size axis. For very small projects (defined as 5000 new and modified source lines of code), using
large teams was somewhat effective in reducing schedule. The average reduction was 24% (slightly over a month), but this
improved schedule performance carried a hefty price tag: project effort/cost tripled and defect density more than doubled.

For larger projects (defined as 50,000 new and modified source lines of code), the large team strategy shaved only 6%
(about 12 days) off the schedule but effort/cost quadrupled and defect density tripled.

The relative magnitude of tradeoffs between team size and schedule, effort, and quality is easily visible: large teams achieve
only modest schedule compression while causing dramatic increases in effort and defect density.

At 5K ESLOC Schedule (Months) Effort (Person Hours) Defect Density

(Defects per K ESLOC)

Small teams 4.6 1260 3.7

Large teams 3.5 4210 9.2

Avg. Difference

(Large team strategy)
-24% 334% 249%

At 50K ESLOC

Small teams 7 3130 1.2

Large teams

6.6 13810 3.9

Avg. Difference

(Large team strategy)
-6% 441% 325%

Quantitative Software Management, Inc.

Schedule vs. System Size

0.1 1 10 100 1,000 10,000
Effective SLOC (thousands)

0.1

1

10

100 C&
T D

uration (M
onths)

Effort vs. System Size

0.1 1 10 100 1,000 10,000
Effective SLOC (thousands)

0.1

1

10

100

C&
T Effort (PH

R) (thousands)

Defect Density vs. System Size
(Err/KESLOC)

0.1 1 10 100 1,000 10,000
Effective SLOC (thousands)

0.001
0.01
0.1
1
10
100
1,000

Avg. Staff vs. System Size

0.1 1 10 100 1,000
Effective SLOC (thousands)

0.1

1

10

100

Small Teams Large Teams Avg. Line Style

Data & Analysis Center for Software (DACS) 19

HISTORY IS THE KEY TO ESTIMATION SUCCESS (CONT.)

What else can the data tell us about the relationship between team size and other software management metrics? A 2010
study by QSM consultant and metrics analyst Paul Below found an interesting relationship between team size and conventional
productivity (defi ned as eff ective SLOC per unit of construct and test eff ort). 6 To make this relationship easier to visualize,
Paul stratifi ed a large sample of recently completed IT projects into 4 size quartiles or bins, then broke each size bin into sub-
quartiles based on team size. Th e resulting observations held true across the entire size spectrum:

•	 In general, productivity increased with project size
•	 With any given size bin productivity decreased as team size went up.

To see the relationship between average productivity and project size, compare any four staffi ng quartiles of the same color
in the graph below from left to right as size (bottom or horizontal axis) increases:

As the quartiles increase in size (bottom axis), average productivity (expressed as SLOC per Person Month of eff ort on the
left-hand axis) rises. Th e slope is reversed for projects of the same size (i.e., within a given size quartile). To see this, compare
the four diff erently colored box plots in the second size quartile highlighted in blue. Th e size and staffi ng vs. productivity
relationships hold true regardless of which Productivity measure is used: SLOC per Person Month, Function Points per Person
Month, and QSM’s PI (or Productivity Index) all increase as project size goes up but decrease as team size relative to project
size increases. Th e implication that the optimal team size is not independent of project scope should not surprise anyone who
has ever worked on a project that was over or under staff ed but the ability to demonstrate these intuitively sensible relationships
between scope and team size with real data is a valuable negotiation tool.

Determining the Optimal Team Size for your Project
If the data suggest that optimal team size is related to project scope, it should be able to help us fi nd the right staffi ng strategy

for projects of various sizes. In a study conducted in the spring of 2011, QSM Consultant Don Beckett decided to explore

Journal of Software Technology 15-1 February 2012: Cost Estimation and Systems Acquisition20

the best team size for diff erent project sizes and management goals. He divided 1920 IT projects completed since 2000 from
the QSM database into four size bins: less than 4000, 4001 – 9400, 9401-25000, and over 25000 SLOC. For each of these
size bins, he determined median eff ort (SLOC/PM) and median schedule (SLOC/Month) productivity values. Based on the
results, he assigned projects to one of four categories:

Bett er than average for eff ort & schedule Worse than average for eff ort & schedule
Bett er for eff ort/worse for schedule Worse for eff ort/bett er for schedule

As the chart below shows, projects in
the smallest size quartile (under 4000
SLOC) using teams of 3 or fewer
people (blue bars) were the most likely
to achieve balanced schedule and cost/
eff ort performance. Teams of 2 or fewer
(purple) achieved the best cost/eff ort
performance and teams of 2-4 (yellow)
delivered the best schedule performance.
Teams that used more than 4 people
achieved dramatically worse cost/eff ort
and schedule performance (green bar).
Th is process was repeated for projects in
the next 3 size quartiles and the results
were entered into a team size matrix:

Size Bin Schedule Optimized Cost/Effort Optimized Balanced Performance
1 - 4000 ESLOC 2 - 4 2 or fewer 3 or fewer

4000 - 9400 ESLOC 2 - 6 3 or fewer 3 or fewer

9401 - 25000 ESLOC 2 - 4 4 or fewer 2 - 4

Over 25000 ESLOC 4 - 6 5 or fewer 2 - 6

Large Projects > 70000 ESLOC 10 - 20 10 - 20 10 - 20
Quanti tati ve Soft ware Management, Inc.

Don’s results confi rm the fi ndings from our previous two studies: the maximum optimal team size for cost/eff ort performance
increases steadily with project size. Th e relationship between schedule performance and team size is less clear, with the optimal
team size for balanced schedule and performance falling somewhere in the middle.

 Expert Judgement vs. Empiricism
Regardless of which estimation methods are used in your organization, uncertainty and risk cannot be eliminated and
should never be ignored. Recognizing and explicitly accounting for the uncertainties inherent in early software estimates is
critical to ensure sound commitments and achievable project plans.

Measures of estimation accuracy that penalize estimators for being “wrong” when dealing with uncertain inputs cloud this
fundamental truth and create powerful disincentives to honest measurement. Recording the diff erence between planned and
actual outcomes is better suited to quantifying estimation uncertainty and feeding that information back into future estimates
than it is to measuring estimation accuracy.

Data & Analysis Center for Software (DACS) 21

HISTORY IS THE KEY TO ESTIMATION SUCCESS (CONT.)

So how can development organizations counter optimism
bias and deliver estimates that are consistent with their proven
ability to deliver software? Collecting and analyzing completed
project data is one way to demonstrate both an organization’s
present capability and the complex relationships between
various management metrics. Access to historical data provides
empirical support for expert judgments and allows managers to
leverage tradeoffs between staffing and cost, quality, schedule
and productivity instead of being sandbagged by them.

The ideal historical database will contain your own projects,
collected using your organization’s data definitions, standards,
and methods but if you haven’t started collecting your
own data, industry data offers another way to leverage the
experiences of other software professionals. Industry databases
typically exhibit more variability than projects collected
within a single organization with uniform standards and
data definitions, but QSM’s three-plus decades of collecting
and analyzing software project metrics have shown that the
fundamental relationships between software schedule, effort,
size, productivity and reliability unite projects developed and
measured over an astonishingly diverse set of methodologies,
programming languages, complexity domains and industries.

Software estimators will always have uncertainty to contend
with, but having solid data at your fingertips can help you
challenge unrealistic expectations, negotiate more effectively,
and avoid costly surprises. Effective measurement puts
managers in the drivers’ seat. It provides the information they
need to negotiate achievable schedules based on their proven
ability to deliver software, find the optimal team size for new
projects, plan for requirements growth, track progress, and
make timely mid-course corrections. The best way to avoid a
repeat of history is to harness it.

About the Author
Kate Armel is the Director of Research and
Technical Support at Quantitative Software
Management, Inc. She has 12 years of
experience in technical writing and metrics
research and analysis and provides technical
and consultative support for Fortune 1000
firms in the areas of software estimation,
tracking, and benchmarking. Ms. Armel was

the chief editor and a researcher and co-author of the QSM
Software Almanac. She also manages the QSM database of
over 10,000 completed software projects.

Endnotes
i The Standish Group, New Standish Group report shows

more project failing and less successful projects. http://
www1.standishgroup.com/newsroom/chaos_2009.php,
(April 23, 2009).

ii J. Laurenz Eveleens and Chris Verhoef, The Rise and Fall
of the Chaos Report Figures, http://www.cs.vu.nl/~x/
chaos/chaos.pdf, (January/February 2010).

iii Philip G. Armour, The Inaccurate Conception, http://
dl.acm.org/citation.cfm?id=1325558&bnc=1, (March
2008).

iv Carmen Reinhart and Kenneth S. Rogoff, This Time Is
Different: Eight Centuries of Financial Folly, (New Jersey:
Princeton University Press, 2009).

v Kate Armel, An In-Depth Look at the QSM Database, http://
www.qsm.com/blog/2011/depth-look-qsm-database,
(September, 2011).

vi Paul Below, Part II: Team Size and Productivity, http://www.
qsm.com/blog/2010/part-ii-team-size-and-productivity
(April, 2010).

Quantitative Software Management, Inc. | 2000 Corporate
Ridge | Suite 700 | McLean, VA 22102

At the DACS we are always pleased to hear from our journal readers. We are
very interested in your suggestions, compliments, complaints, or questions.
Please visit our website http://journal.thedacs.com, and fill out the survey
form. If you provide us with your contact information, we will be able to reach
you to answer any questions.

we like your feedback

Journal of Software Technology 15-1 February 2012: Cost Estimation and Systems Acquisition22

