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It was late afternoon in April of 1999 when the phone in my 
office rang. The conversation went something like this:

“This software estimate just landed on my desk and I 
need to finish it by close of business today to support a fixed 
price bid.”

“What can you tell me about this project?”

“We’re rewriting an existing mainframe billing system 
developed in COBOL. The new system will be written in 
C++, so it should be much smaller than the old system.”

“Great –perhaps we can use the existing system as a rough 
baseline. How big is it?”

“I don’t have that information.”

“Will this be a straight rewrite, or will you add new 
features?”

“Not sure – the requirements are still being fleshed out.”

“What about resources? How many people do you have 
on hand?”

“Not sure – the team size will depend on how much work 
must be done... which we don’t know yet.”

“Can we use some completed projects to assess your 
development capability?”

“Sorry, we don’t have any history.”

“That’s OK –even without detailed information on scope, 
resources, or productivity we should still be able to produce 

a rough order of magnitude estimate based on 
relevant industry data.”

“Rough order of magnitude??? My boss will 
never accept that much risk on a fixed price 
bid! Isn’t there some general rule of thumb we 
can apply?”

Welcome to the world of software cost estimation where the 
things we know – the known knowns - are often outweighed by 
the things we don’t know.  Numerous estimation methods exist. 
Scope is described using effort, delivered code volume, features, 
or function points. Expert judgment, Wideband Delphi, top 
down, bottom up, parametric and algorithmic models each 
have their determined champions. But regardless of method, all 
estimates are vulnerable to risk arising from uncertain inputs, 
requirements changes, and scope creep.  Skilled estimators and 
better methods can reduce this risk, but they can’t eliminate 
it. Thus, the ability to identify and account for uncertainty 
remains a vital component of successful risk management.

Estimation Accuracy vs. Estimation Usefulness
How accurate is the average software cost estimate? Industry 

statistics vary as widely as the estimates they seek to measure. 
One oft-cited study – the Standish Group’s Chaos Report – 
concludes that only one third of software projects deliver the 
promised functionality on time and within budget1. A later 
IEEE study2 noted several gaps in the Standish Group’s criteria 
for estimation accuracy:

…the [Standish] definitions don’t cover all 
possibilities. For instance, a project that’s within 
budget and time but that has less functionality 
doesn’t fit any category.  … The Standish Group’s 
measures … neglect under runs for cost and time 
and over runs for the amount of functionality. 

When studies rely on different definitions of estimation 
success or failure, we should expect their assessments of 
estimation accuracy to exhibit considerable variability. The 
existence of different standards raises an intriguing question: 
what makes an estimate “accurate”? 

There are known unknowns… 
But there are also unknown unknowns,  
The ones we don’t know  
We don’t know.

—Secretary of Defense Donald Rumsfeld, February 2002 

[             ]
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Most quality control measures for estimates 
compare estimated cost/eff ort, schedule, or scope 
to their actual (fi nal) values. Th e problem with this 
formulation is that “accurate” estimates are an integral 
part of feasibility decisions made very early in the 
project lifecycle; long before anything but the most 
generic information about the system’s intended 
features or use can be known with reasonable 
certainty. Th e technologies used to implement the 
requirements may be unknown and the schedule, 
team size, required skill mix, and project plan have 
yet to be determined.  As design and coding progress, 
the list of unknowns grows shorter and decreasing 
uncertainty about the estimation inputs lowers the 
risk surrounding the estimated cost, schedule, and 
scope.  Unfortunately, most organizations must make 
binding commitments before detailed and reliable 
information about the project is available.

Given the degree of uncertainty surrounding early 
estimates – and the correspondingly broad range of possible 
time/eff ort/scope combinations - estimation accuracy may be 
less important than estimation usefulness. In an article for the 
ACM, Philip Armour explores the diff erence between these 
two concepts3: 

The commitment is the point along the estimate 
probability distribution curve where we promise the 
customer and assign resources. Th is is what we need to hit, 
at least most of the time. It is not a technical estimation 
activity at all but is a risk/return based business activity. It 
is founded on the information obtained from the estimate, 
but is not the estimate. Using Figure 3 as an example, 
if we needed an accurate commitment in the earliest 
(Initial Concept) phase based on how the diagram shows 
the project actually worked out, we 
would have had to commit at around 
a 75% probability. From the fi gure, 
committing to the “expected” result 
at Initial Concept would have led 
to a signifi cant overrun beyond that 
commitment, and the project would 
have “failed.” We can consider the 
50% (expected) result to represent 
the cost of the project and the 25% 
increment to the higher commitment 
level to represent the cost of the risk 
of the project. 

Measures of estimation accuracy that treat an estimate as 
“wrong” or a project as “failed” whenever the fi nal scope, 
schedule, or cost diff er from their estimated values penalize 
estimators for something outside their control: the uncertainty 
that comes from incomplete information.  We should measure 
deviations between estimated and actual project outcomes 
because this information helps us quantify estimation 
uncertainty and account for it in future estimates.  But if 
measurement becomes a stick used to punish estimators, they 
will have little incentive to collect and use metrics to improve 
future estimates.

Understanding and Assessing Tradeoff s
An old project management maxim succinctly summarizes 

the choices facing software development organizations: “You 
can have it fast, cheap, or good. Pick two.” 
Given that estimates (and therefore, 
commitments) are made early in the 
project lifecycle when uncertainty is high 
and the range of possible solutions is 
still wide, how do we select plans with a 
high probability of success?  A thorough 
understanding of management tradeoff s 
can help. Th e idea behind the infamous 
Project Management Triangle is simple 
but powerful: the tradeoffs between 
software schedule, eff ort or cost, and 
quality are both real and unforgiving. 
Th anks to the work of pioneers like Fred 

Data & Analysis Center for Software (DACS) 17



HISTORY IS THE KEY TO ESTIMATION SUCCESS (CONT.)

Brooks, most software professionals now accept the existence 
and validity of these tradeoffs but as Brooks himself once 
ruefully observed, quoting famous maxims is no substitute 
for managing by them. 

With so many unknowns out there, why don’t we make 
better use of what we do know? Most software “failures” are 
attributable to the human penchant for unfounded optimism. 
Under pressure to win business, organizations blithely set 
aside carefully constructed estimates and ignore sober risk 
assessments in favor of plans that just happen to match what 
the company needs to bid to secure new business. Lured by 
the siren song of the latest tools and methods, it becomes all 
too easy to elevate future hopes over past experience. This 
behavior is hardly unique to software development. Recently 
two economists (Carmen Reinhart and Kenneth Rogoff) cited 
this tendency to unfounded optimism as one of the primary 
causes of the 2008 global financial crisis. Their exhaustive 
study of events leading up to the crash provides powerful 
evidence that optimism caused both banks and regulators 
to dismiss centuries-old banking practices. They dubbed 
this phenomenon the “This Time Is Different” mentality4. 
Citing an extensive database of information gleaned from 
eight centuries of sovereign financial crises, bank panics, and 
government defaults, Reinhart and Rogoff illustrate a pattern 
that should be depressingly familiar to software professionals: 
without constant reminders of 
past experiences, our natural 
optimism bias makes us prone 
to underestimate risk and 
overestimate the likelihood of 
positive outcomes. 

The best counter to unfounded 
optimism is the sobering 
voice of history, preferably 
supported by ample empirical 
evidence.  This is where a large 
historical database can provide 
valuable perspective on current 
events.  Software development 
is full of complex, nonlinear 
tradeoffs between time, effort, 
and quality. Because these 
relationships are nonlinear, a 
20% reduction in schedule or 
effort can have vastly different 
effects at different points along 
the size spectrum.  We know 

this, but the human mind is poorly equipped to account for 
non-intuitive exponential relationships on the fly. 

Without historical data, estimators must rely on experience 
or expert judgment when assessing the potential effects of small 
changes to effort, schedule, or scope on an estimate. They can 
guess what effect such changes might have, but they cannot 
empirically prove that a change of the same magnitude may be 
beneficial in one case but disastrous in another. The presence 
of an empirical baseline removes much of the uncertainty 
and subjectivity from the evaluation of management metrics, 
allowing the estimator to leverage tradeoffs and negotiate more 
achievable (hence, less risky) project outcomes. One of the 
most powerful of these project levers is staffing. A recent study 
of projects from the QSM database5 used 1060 IT projects 
completed between 2005 and 2011 to show that small changes 
to a project’s team size or schedule dramatically affect the final 
cost and quality.  To demonstrate the power of the time/effort 
tradeoff, projects were divided into two “staffing bins”:

•	 Projects that used small teams of 4 or fewer FTE staff
•	 Projects that used large teams of 5 or more FTE staff.

The size bins span the median team size of 4.6, producing 
roughly equal samples covering the same size range with no 
overlap in team size. Median team size was 8.5 for the large 
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team projects and 2.1 for the small team projects, making the ratio of large median to small median staff approximately 4 to 
1.  The wide range of staffing strategies for projects of the same size is a vivid reminder that team size is highly variable, even 
for projects of the same size. It stands to reason that managers who add or remove staff from a project need to understand the 
implications of such decisions.

Regression trends were run through each sample to determine the average Construct & Test effort, schedule, and quality 
at various points along the size axis.  For very small projects (defined as 5000 new and modified source lines of code), using 
large teams was somewhat effective in reducing schedule. The average reduction was 24% (slightly over a month), but this 
improved schedule performance carried a hefty price tag: project effort/cost tripled and defect density more than doubled.  

For larger projects (defined as 50,000 new and modified source lines of code), the large team strategy shaved only 6% 
(about 12 days) off the schedule but effort/cost quadrupled and defect density tripled. 

The relative magnitude of tradeoffs between team size and schedule, effort, and quality is easily visible: large teams achieve 
only modest schedule compression while causing dramatic increases in effort and defect density. 

At 5K ESLOC Schedule (Months) Effort (Person Hours) Defect Density 

(Defects per K ESLOC)

Small teams 4.6 1260 3.7

Large teams 3.5 4210 9.2

Avg. Difference  

(Large team strategy)
-24% 334% 249%

At 50K ESLOC

Small teams 7 3130 1.2

Large teams

6.6 13810 3.9

Avg. Difference  

(Large team strategy)
-6% 441% 325%

Quantitative Software Management, Inc.  
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What else can the data tell us about the relationship between team size and other software management metrics?  A 2010 
study by QSM consultant and metrics analyst Paul Below found an interesting relationship between team size and conventional 
productivity (defi ned as eff ective SLOC per unit of construct and test eff ort). 6  To make this relationship easier to visualize, 
Paul stratifi ed a large sample of recently completed IT projects into 4 size quartiles or bins, then broke each size bin into sub-
quartiles based on team size. Th e resulting observations held true across the entire size spectrum:

•	 In general, productivity increased with project size
•	 With any given size bin productivity decreased as team size went up.

To see the relationship between average productivity and project size, compare any four staffi  ng quartiles of the same color 
in the graph below from left to right as size (bottom or horizontal axis) increases:

As the quartiles increase in size (bottom axis), average productivity (expressed as SLOC per Person Month of eff ort on the 
left-hand axis) rises.  Th e slope is reversed for projects of the same size (i.e., within a given size quartile). To see this, compare 
the four diff erently colored box plots in the second size quartile highlighted in blue.  Th e size and staffi  ng vs. productivity 
relationships hold true regardless of which Productivity measure is used: SLOC per Person Month, Function Points per Person 
Month, and QSM’s PI (or Productivity Index) all increase as project size goes up but decrease as team size relative to project 
size increases. Th e implication that the optimal team size is not independent of project scope should not surprise anyone who 
has ever worked on a project that was over or under staff ed but the ability to demonstrate these intuitively sensible relationships 
between scope and team size with real data is a valuable negotiation tool.

Determining the Optimal Team Size for your Project
If the data suggest that optimal team size is related to project scope, it should be able to help us fi nd the right staffi  ng strategy 

for projects of various sizes. In a study conducted in the spring of 2011, QSM Consultant Don Beckett decided to explore 
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the best team size for diff erent project sizes and management goals. He divided 1920 IT projects completed since 2000 from 
the QSM database into four size bins: less than 4000, 4001 – 9400, 9401-25000, and over 25000 SLOC. For each of these 
size bins, he determined median eff ort (SLOC/PM) and median schedule (SLOC/Month) productivity values. Based on the 
results, he assigned projects to one of four categories: 

Bett er than average for eff ort & schedule Worse than average for eff ort & schedule
Bett er for eff ort/worse for schedule Worse for eff ort/bett er for schedule

As the chart below shows, projects in 
the smallest size quartile (under 4000 
SLOC) using teams of 3 or fewer 
people (blue bars) were the most likely 
to achieve balanced schedule and cost/
eff ort performance. Teams of 2 or fewer 
(purple) achieved the best cost/eff ort 
performance and teams of 2-4 (yellow) 
delivered the best schedule performance. 
Teams that used more than 4 people 
achieved dramatically worse cost/eff ort 
and schedule performance (green bar).  
Th is process was repeated for projects in 
the next 3 size quartiles and the results 
were entered into a team size matrix:

Size Bin Schedule Optimized Cost/Effort Optimized Balanced Performance
1 - 4000 ESLOC 2 - 4 2 or fewer 3 or fewer

4000 - 9400 ESLOC 2 - 6 3 or fewer 3 or fewer

9401 - 25000 ESLOC 2 - 4 4 or fewer 2 - 4

Over 25000 ESLOC 4 - 6 5 or fewer 2 - 6

Large Projects > 70000 ESLOC 10 - 20 10 - 20 10 - 20       
Quanti tati ve Soft ware Management, Inc.

Don’s results confi rm the fi ndings from our previous two studies: the maximum optimal team size for cost/eff ort performance 
increases steadily with project size. Th e relationship between schedule performance and team size is less clear, with the optimal 
team size for balanced schedule and performance falling somewhere in the middle.

 Expert Judgement vs. Empiricism
Regardless of which estimation methods are used in your organization, uncertainty and risk cannot be eliminated and 
should never be ignored. Recognizing and explicitly accounting for the uncertainties inherent in early software estimates is 
critical to ensure sound commitments and achievable project plans.

Measures of estimation accuracy that penalize estimators for being “wrong” when dealing with uncertain inputs cloud this 
fundamental truth and create powerful disincentives to honest measurement. Recording the diff erence between planned and 
actual outcomes is better suited to quantifying estimation uncertainty and feeding that information back into future estimates 
than it is to measuring estimation accuracy.
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So how can development organizations counter optimism 
bias and deliver estimates that are consistent with their proven 
ability to deliver software? Collecting and analyzing completed 
project data is one way to demonstrate both an organization’s 
present capability and the complex relationships between 
various management metrics. Access to historical data provides 
empirical support for expert judgments and allows managers to 
leverage tradeoffs between staffing and cost, quality, schedule 
and productivity instead of being sandbagged by them.  

The ideal historical database will contain your own projects, 
collected using your organization’s data definitions, standards, 
and methods but if you haven’t started collecting your 
own data, industry data offers another way to leverage the 
experiences of other software professionals. Industry databases 
typically exhibit more variability than projects collected 
within a single organization with uniform standards and 
data definitions, but QSM’s three-plus decades of collecting 
and analyzing software project metrics have shown that the 
fundamental relationships between software schedule, effort, 
size, productivity and reliability unite projects developed and 
measured over an astonishingly diverse set of methodologies, 
programming languages, complexity domains and industries.

Software estimators will always have uncertainty to contend 
with, but having solid data at your fingertips can help you 
challenge unrealistic expectations, negotiate more effectively, 
and avoid costly surprises. Effective measurement puts 
managers in the drivers’ seat. It provides the information they 
need to negotiate achievable schedules based on their proven 
ability to deliver software, find the optimal team size for new 
projects, plan for requirements growth, track progress, and 
make timely mid-course corrections.  The best way to avoid a 
repeat of history is to harness it.
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At the DACS we are always pleased to hear from our journal readers.  We are 
very interested in your suggestions, compliments, complaints, or questions. 
Please visit our website http://journal.thedacs.com, and fill out the survey 
form. If you provide us with your contact information, we will be able to reach 
you to answer any questions.

we like your feedback
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