
Using SLIM to Objectively Compare COTS,
New Development, and Enhancement

Alternatives

September 28, 2006

1© 2006 BearingPoint, Inc.

Contacts

Questions regarding this presentation should be addressed to:

Joseph Madden
Senior Manager
BearingPoint
1676 International Drive
McLean, VA 22102
Tel: +1.703.747.5074
E-mail: joseph.madden@bearingpoint.com

2© 2006 BearingPoint, Inc.

Introduction

Unfortunately, make vs. buy vs. enhance decisions are often made subjectively and without
much rigor. Examples of the impact of these decisions include:

COTS implementation projects that require so much customization that the end result
is a “Frankenstein” version of the original COTS product.

Legacy system enhancement projects that requires a complete rewrite of the entire
code base.

New custom development projects that result in duplication of functionality that
already exists in a COTS tool or legacy system.

3© 2006 BearingPoint, Inc.

Approach

1. Determine size by
performing function point
estimate of requirements

2. Allocate percentages for
new development, COTS,
and enhancement

4. Enter SLIM customization
options based on type of
project

3. Determine productivity

5. Analyze results and
document assumptions

Our five step approach provides a method for comparing COTS, new development and
enhancement alternatives more objectively.

4© 2006 BearingPoint, Inc.

Step 1: Determine Size Using Function
Point Analysis

Input OutputApplication Data
Internal Logical

Files (ILF)
External Inputs (EI)

Screens

External Interface
Files (EIF)

Other Outputs
(On-Line)

Other Applications

Reports

External Inquiries (EQ)

Function Point Sizing

External Outputs (EO)

EI weights
Low = 3
Average = 4
High = 6

EO weights
Low = 4
Average = 5
High = 7

ILF weights
Low = 7
Average = 10
High = 15

EQ weights
Low = 3
Average = 4
High = 6

EIF weights
Low = 5
Average = 7
High = 10

The most important first step is to size the functional requirements using a method that is
technology independent and based on a standard. Function Point Analysis is one such
method.

5© 2006 BearingPoint, Inc.

Function Points vs. Lines of Code

Function points were invented by Allan Albrecht of IBM in 1979 to address problems with
using lines of code for software size:

There is no standard for a line of code.

Lines of code do not measure a completed product.

The lines of code required for a given function vary widely between different
programming languages and tools (e.g. on average, COBOL requires almost twice as
many lines of code as Visual Basic).

The lines of code written for a given function vary widely between programmers of
various skill levels.

Lines of code reward poor design and penalize tight design.

Lines of code penalize reuse.

6© 2006 BearingPoint, Inc.

Function Points vs. Lines of Code (Cont.)

Function points offer many advantages over lines of code and other sizing techniques:

Technology and Platform Independent – Function point analysis sizes software
based on user requirements, allowing for apples-to-apples comparisons between
projects using different technology and/or platforms. It can be used to objectively
compare various alternatives such as COTS, enhancement, and new development.

Industry-wide Acceptance - Function point analysis is based on an International
Organization for Standardization (ISO) standard. It has been used for over 25 years
and is the most widely used method for measuring the functional size of software.
Over 400 government and industry organizations belong to the International Function
Point Users Group (IFPUG).

Consistent Measurement – IFPUG (www.ifpug.org) maintains a function point
counting standard as well as a formal certification program. Counts performed by
Certified Function Point Specialists (CFPS) do not vary by more than 10 percent.

Can Be Used Early in the Software Life Cycle – Reliable software estimates can be
performed early in the requirements phase, allowing for more predictable schedules.

7© 2006 BearingPoint, Inc.

Function Point Analysis During the Life
Cycle of an Application

Function point analysis can be used to estimate project size long before any code is written. It
can also be used later in the life cycle to validate the as-built functionality and to estimate the
size of proposed enhancements.

System Development Life Cycle

ConOps Requirements Design Construction Delivery Maintenance

Function
Point Count

(Project Size)

Function
Point

Estimate

Function Point
Count

(Enhancement)

Function
Point Count
(Application
Baseline)

8© 2006 BearingPoint, Inc.

Step 2: Allocate Percentages of
Functionality to Each Alterative

The example below identifies functions that can be satisfied by COTS vs. custom code.

9© 2006 BearingPoint, Inc.

Gearing Factor

The SLIM tool uses what is called a gearing factor, Source Lines of Code (SLOC) per function
point, to account for differences in implementation tools. QSM, Inc. maintains a table of
gearing factors on its website. Based on this table, and advice from QSM, Inc., we made the
following assumptions in the examples that follow:

New custom code will be in a modern, object-oriented, programming language similar
to Java with a gearing factor of 80.

Enhancements to the legacy system will be made in PowerBuilder with a gearing
factor of 31 .

COTS configurations will be made with a gearing factor of 10.

10© 2006 BearingPoint, Inc.

Example: New Development Alternative
The example below is an alternative that assumes new development for most functions.

A blended gearing factor is derived for any
functions that are not satisfied with reused,
unmodified code. The gearing factor is
then entered into SLIM along with the total
size and percentage of new, modified and
reused code.

11© 2006 BearingPoint, Inc.

Example: COTS Alternative
The example below is an alternative that assumes COTS will be used to satisfy functionality
wherever possible. Those functions not satisfied by the COTS product will have to be developed
using custom code.

12© 2006 BearingPoint, Inc.

Example: Enhancement Alternative
The example below is an alternative that assumes enhancement of a legacy system to satisfy
as many functions as possible.

13© 2006 BearingPoint, Inc.

Step 3: Determine Productivity

For the example alternatives analysis, we started with a baseline Productivity Index (PI)
representative of the SLIM database average productivity for applications of similar size and
type. We then made several adjustments to the PI. For each of the alternatives, we made PI
adjustments based on the percentage of reused, unmodified code that will have to be re-
tested. This includes:

COTS out-of-the-box

As-is code from the current system

Code from a previous phase

For the enhancement alternative, we made PI adjustments to tooling/methods to account for
the fact that the existing legacy system is written in tool versions that are no longer supported.

14© 2006 BearingPoint, Inc.

Step 4: Enter SLIM Customization
Options

The SLIM tool provides a number of customization options. Some of the customization
options that should be considered include:

Phases to be included in the estimate - often COTS and enhancement alternatives
require a front end feasibility study phase.

Labor rate assumptions for cost – are they different for each alternative?

Application type

15© 2006 BearingPoint, Inc.

Step 5: Analyze Results and
Document Assumptions

Once the SLIM assumptions and constraints are determined, the final step is to analyze
tradeoffs between cost, schedule, and peak staff to come up with the final SLIM cost and
schedule estimates for each alternative. Some additional items to consider outside of the
SLIM tool include:

Data migration costs.

COTS license fees

Operations and maintenance costs

16© 2006 BearingPoint, Inc.

Summary

The SLIM tool can be used successfully to compare COTS, new development, and
enhancement alternatives. The key takeaways are:

Size the requirements using a technology independent method such as function point
analysis.

Identify the tools that will be used for each alternative and determine the gearing
factor.

For each alternative, determine how each function will be implemented (e.g. COTS
out of the box, COTS configuration, custom code, enhancement to legacy code).
Calculate a blended gearing factor and percentage of reused, unmodified code.

Calibrate the PI for each alternative.

If appropriate for a given alternative, add an extra front end feasibility study phase.

	Contacts
	Introduction
	Approach
	Step 1: Determine Size Using Function Point Analysis
	Function Points vs. Lines of Code
	Function Points vs. Lines of Code (Cont.)
	Function Point Analysis During the Life Cycle of an Application
	Step 2: Allocate Percentages of Functionality to Each Alterative
	Gearing Factor
	Example: New Development Alternative
	Example: COTS Alternative
	Example: Enhancement Alternative
	Step 3: Determine Productivity
	Step 4: Enter SLIM Customization Options
	Step 5: Analyze Results and Document Assumptions
	Summary

