P

BearingPoint

Using SLIM to Objectively Compare COTS,
New Development, and Enhancement
Alternatives

September 28, 2006

BearingPoint

Contacts

Questions regarding this presentation should be addressed to:

Joseph Madden

Senior Manager

BearingPoint

1676 International Drive

MclLean, VA 22102

Tel: +1.703.747.5074

E-mail: joseph.madden@bearingpoint.com

© 2006 BearingPoint, Inc.

BearingPoint

Introduction

Unfortunately, make vs. buy vs. enhance decisions are often made subjectively and without
much rigor. Examples of the impact of these decisions include:

COTS implementation projects that require so much customization that the end result
is a “Frankenstein” version of the original COTS product.

Legacy system enhancement projects that requires a complete rewrite of the entire
code base.

New custom development projects that result in duplication of functionality that
already exists in a COTS tool or legacy system.

© 2006 BearingPoint, Inc.

Approach

BearingPoint

Our five step approach provides a method for comparing COTS, new development and
enhancement alternatives more objectively.

1. Determine size by
performing function point
estimate of requirements

1

2. Allocate percentages for
new development, COTS,
and enhancement

1

3. Determine productivity

1

4. Enter SLIM customization
options based on type of
project

2]

5. Analyze results and
document assumptions

© 2006 BearingPoint, Inc.

Step 1: Determine Size Using Function

Point Analysis

BearingPoint

The most important first step is to size the functional requirements using a method that is
technology independent and based on a standard. Function Point Analysis is one such

method.

Input

External Inputs (El)

—_ | Elweights

Low =3
Average =4
High =6

External Inquiries (EQ)

Screens
— 1

EQ weights
Low =3
Average =4

High =6

—

Function Point Slzmg

g Appllcatlon Data \

V Internal Logical

Files (ILF)
P

ILF weights
Low =7
Average =10
High =15

Other Applications

External Interface
Files (EIF)

EIF weights
Low =5
Average =7
High =10

Output

\ | External Outputs (EO)

| Reports
/| EO weights ht
Low
Average = 5 ; Other Outputs
High =7 (On-Line)

D

© 2006 BearingPoint, Inc.

BearingPoint

Function Points vs. Lines of Code

Function points were invented by Allan Albrecht of IBM in 1979 to address problems with
using lines of code for software size:

There is no standard for a line of code.
Lines of code do not measure a completed product.

The lines of code required for a given function vary widely between different

programming languages and tools (e.g. on average, COBOL requires almost twice as
many lines of code as Visual Basic).

The lines of code written for a given function vary widely between programmers of
various sKill levels.

Lines of code reward poor design and penalize tight design.

Lines of code penalize reuse.

© 2006 BearingPoint, Inc. 5

BearingPoint

Function Points vs. Lines of Code (Cont.)

Function points offer many advantages over lines of code and other sizing techniques:

Technology and Platform Independent — Function point analysis sizes software
based on user requirements, allowing for apples-to-apples comparisons between
projects using different technology and/or platforms. It can be used to objectively
compare various alternatives such as COTS, enhancement, and new development.

Industry-wide Acceptance - Function point analysis is based on an International
Organization for Standardization (ISO) standard. It has been used for over 25 years
and is the most widely used method for measuring the functional size of software.
Over 400 government and industry organizations belong to the International Function
Point Users Group (IFPUG).

Consistent Measurement — IFPUG (www.ifpug.org) maintains a function point
counting standard as well as a formal certification program. Counts performed by
Certified Function Point Specialists (CFPS) do not vary by more than 10 percent.

Can Be Used Early in the Software Life Cycle — Reliable software estimates can be
performed early in the requirements phase, allowing for more predictable schedules.

© 2006 BearingPoint, Inc. 6

Function Point Analysis During the Life
Cycle of an Application

. = . .
BearingPoint

Function point analysis can be used to estimate project size long before any code is written. It
can also be used later in the life cycle to validate the as-built functionality and to estimate the
size of proposed enhancements.

System Development Life Cycle

ConOps Requirements Design Construction Delivery = Maintenance

Fungtion Function Function Function Point
Point Point Count Point Count Count
Estimate (Project Size) (Application (Enhancement)
Baseline)

© 2006 BearingPoint, Inc. 7

Step 2: Allocate Percentages of
Functionality to Each Alterative

BearingPoint

The example below identifies functions that can be satisfied by COTS vs. custom code.

L Custom COTS Box COTS
Function Tyvpe Count ustom Code Code COTS Box Subtotal COTS Config Config
Create Home Study Allowance Approval Package El 4 4
Yiews list of Horme Study Allowance Approval Packages EQ 3 3
Review Proposed Hame Study Ed Allow Pk EQ 4 4
Delete Proposed Home Study Ed Allow Pkg El 3 3
Approve Proposed Home Study Ed Allowe Pk El 4 4
Print Proposed Home Study Ed Allow Fkg EQ 4 4
Special Meeds Education Allowance Approval Fackage ILF 10 10
Special Meeds Education Survey
Special Meeds Recoomendation Memo
Create Special Meeds Allowance Approval Fackage El 4 4
Yiew list of Special Meeds Ed Allow Fkg EQ 3 3
Feview Proposed Speical Meeds Ed Allow Plko EQ 4 4
Delete Proposed Special Meeds Ed Allow Pki El 3 3
Approve Proposed Special Meeds Ed Allow Pko El 4 4
Print Proposed Special Meeds Ed Allow Pk EQ 4 4
Course Categories ILF 7 ¥
Yiew Course Categories EQ 3 3
pdate Course Categories El 3 3
Counties for Special Ed Input Calculations ILF 7 ¥
Yiew Counties for Special Ed Input Calcuations EQ 3 3
Lpdate Counties for Special Ed Input Calcuations El 3 3
Disahility Types ILF 7 7
Yiew Disability Types EQ 3 3
Lpdate Disahility Types El 3 3
Base School for Each Post ILF 7 7
Yiew Base School at Each Post EQ 3 3
pdate Base School at Each Post El 3 3
Subtotal Phase 2 a0a 397 50 359
Totaf 5ize Custom Coide COTS Box COTS Config
1123 257 a9 467

b | M5 Mew Development % COTS 4 AIS Overhaul /
© 2006 BearingPoint, Inc. 8

BearingPoint

Gearing Factor

The SLIM tool uses what is called a gearing factor, Source Lines of Code (SLOC) per function
point, to account for differences in implementation tools. QSM, Inc. maintains a table of
gearing factors on its website. Based on this table, and advice from QSM, Inc., we made the
following assumptions in the examples that follow:

New custom code will be in a modern, object-oriented, programming language similar
to Java with a gearing factor of 80.

Enhancements to the legacy system will be made in PowerBuilder with a gearing
factor of 31 .

COTS configurations will be made with a gearing factor of 10.

© 2006 BearingPoint, Inc.

Example: New Development Alternative

BearingPoint

The example below is an alternative that assumes new development for most functions.

Phase 2 New Development

Reused, unmodified code =ize (FF) % Total
COTS out-of-the-box 3 0%
FPhase 1 functionality 317 28%
320 C28%
oystemn integration work % Slweork SLIM gearing factor
COTS configure 19 2% 2% 10 a
Custam code 7a4d /0% S5 %% 50 fi=
803 G2 Elended gearing factor 38
Total size input to LI 112 100%

Expected Total Size

Tatal FP
Gearing Fan:tn:ur

A blended gearing factor is derived for any
functions that are not satisfied with reused,
unmodified code. The gearing factor is
then entered into SLIM along with the total .
Uncertainty B ange

size and percentage of new, modified and |
reused code. -
Low

Size Calculatar... |

High

© 2006 BearingPoint, Inc.

Eff FF 303

99% Eff Range
786 to 1,460

10

BearingPoint

Example: COTS Alternative

The example below is an alternative that assumes COTS will be used to satisfy functionality

wherever possible. Those functions not satisfied by the COTS product will have to be developed
using custom code.

Phase 2 COTS
Feused, unmodified code =ize (FP) % Total
COTS out-of-the-box il 4%
Phase 1 functionality 317 25%
| C33W
aystem integration work % Sl wark LM gearing factar
COTS configure 355 32% 47 % 15 7
Custom code 397 35 % 53% 50 42
5k C67%) Blended gearing factor (49)
Total size input to SLIM QI1z 1%

© 2006 BearingPoint, Inc. 1

Example: Enhancement Alternative

BearingPoint

The example below is an alternative that assumes enhancement of a legacy system to satisfy

as many functions as possible.

Phase 2 Overhaul

Feused, unmodified code

=ize (FPY % Total

COTS out-of-the-box 3 0%
Existing code 172 15%
Phase 1 functionality 317 28%
492 <D
aystem integration wark % Sl work LM gearing factor
COT= canfigure 19 2% 3% 15 0
Changed code 354 32% 56% 32 18
Custom code 258 23% 41% &l 33
b3 Gﬁ@ Blended gearing factor (51)
Total size input to SLIM 1123 100%

© 2006 BearingPoint, Inc.

12

BearingPoint

Step 3: Determine Productivity

For the example alternatives analysis, we started with a baseline Productivity Index (PI)
representative of the SLIM database average productivity for applications of similar size and
type. We then made several adjustments to the PIl. For each of the alternatives, we made PI
adjustments based on the percentage of reused, unmodified code that will have to be re-
tested. This includes:

COTS out-of-the-box
As-is code from the current system

Code from a previous phase

For the enhancement alternative, we made Pl adjustments to tooling/methods to account for
the fact that the existing legacy system is written in tool versions that are no longer supported.

© 2006 BearingPoint, Inc.

13

Step 4: Enter SLIM Customization BearingPoint
Options

The SLIM tool provides a number of customization options. Some of the customization
options that should be considered include:

Phases to be included in the estimate - often COTS and enhancement alternatives
require a front end feasibility study phase.

Labor rate assumptions for cost — are they different for each alternative?

Application type

© 2006 BearingPoint, Inc. 14

Step 5: Analyze Results and BearingPoint
Document Assumptions

Once the SLIM assumptions and constraints are determined, the final step is to analyze
tradeoffs between cost, schedule, and peak staff to come up with the final SLIM cost and
schedule estimates for each alternative. Some additional items to consider outside of the
SLIM tool include:

Data migration costs.
COTS license fees

Operations and maintenance costs

© 2006 BearingPoint, Inc. 15

BearingPoint

Summary

The SLIM tool can be used successfully to compare COTS, new development, and
enhancement alternatives. The key takeaways are:

Size the requirements using a technology independent method such as function point
analysis.

|dentify the tools that will be used for each alternative and determine the gearing
factor.

For each alternative, determine how each function will be implemented (e.g. COTS
out of the box, COTS configuration, custom code, enhancement to legacy code).
Calculate a blended gearing factor and percentage of reused, unmodified code.

Calibrate the PI for each alternative.

If appropriate for a given alternative, add an extra front end feasibility study phase.

© 2006 BearingPoint, Inc. 16

	Contacts
	Introduction
	Approach
	Step 1: Determine Size Using Function Point Analysis
	Function Points vs. Lines of Code
	Function Points vs. Lines of Code (Cont.)
	Function Point Analysis During the Life Cycle of an Application
	Step 2: Allocate Percentages of Functionality to Each Alterative
	Gearing Factor
	Example: New Development Alternative
	Example: COTS Alternative
	Example: Enhancement Alternative
	Step 3: Determine Productivity
	Step 4: Enter SLIM Customization Options
	Step 5: Analyze Results and Document Assumptions
	Summary

