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What Are the Chances? Probability Made Clear

Scope:

any of the most significant events of our lives involve random
Mchance—the people we meet, the accidents that befall us, the

weather, the stock market, the games we play, the professions we
fall into. Whether we are assessing the chance of being struck by lightning,
the chance of winning the lottery, or the chance that it will rain tomorrow,
we are confronted with trying to describe in as precise a manner as possible
the likelihood of an outcome that is uncertain. Probability is the study that
accomplishes the seemingly impossible feat of giving a meaningful numerical
value to the likelihood that an event will occur when we admit that we do not
and cannot know what will happen.

The basic strategy of probability is clear and simple. When we flip a fair
coin, one of two equally likely outcomes will occur; namely, it will land
on heads or tails. Thus, we define the probability of landing on heads as 1
out of 2, that is, 1/2. Or, if we roll a fair die, because there are six equally
likely possible outcomes, the probability of rolling any one of them, say a
four, is simply 1 out of 6, or 1/6. In other words, when probability involves
equally likely outcomes, the concept of probability is simply a matter of
counting. However, we soon find that the “simple matter of counting” is
often not simple at all and frequently leads to surprises. A famous example is
that among any random group of 50 people, there is a 97% chance that two
or more of them have the same birthday. Our intuition about the likelihood
of events, particularly rare events, often diverges sharply from the truth.
As we explore probabilistic surprises, we will refine our intuition about
the probability of random events and will learn more specifically what is
surprising and what is not. We will learn why coincidences are so common
and why we must learn to expect the unexpected.

In no place is the role of probability clearer than in games of chance; thus,
we will introduce some of the basic ideas of probability using cards, dice,
and roulette. In fact, it was in the arena of gambling that the mathematical
investigation of probability first arose. In the 17" century, a gambler by the



Scope

name of Antoine Gombault, the Chevalier de Méré, sought the advice of
leading mathematicians of the day with the goal of improving his ability to
make good decisions when playing dice. In answering Gombault’s questions,
Pierre Fermat and Blaise Pascal developed the fundamental concepts
of probability.

Probability is the study of events whose outcomes are random. But
randomness is a subtle concept. Events with random outcomes have the
property that no particular outcome is known in advance; however, in the
aggregate, the outcomes occur with a specific frequency. For example, when
we flip a fair coin, we do not know how it will land, but if we flip the coin
millions of times, we know that it will land heads up very close to 50% of
the time. The distinction between our ignorance about the outcome of a
particular trial and our knowing the aggregate behavior of many trials is the
peculiar domain of randomness and probability.

Probability has applications in many arenas. For example, randomness and
probability are central to the concept of statistical inference. But surprisingly,
probability is involved in the solutions to many questions that do not at
first appear to contain any element of randomness. For example, there are
methods by which one can take a very large number, such as one with several
hundred digits, and test whether or not it is prime using methods that involve
probability. It is certainly not obvious how randomness and probability could
possibly play a role in such a situation, because ultimately, the number is
prime or it’s not—there is no randomness involved. Another application of
randomness and probability occurs in psychology. If we want to train our
dogs to respond to a signal and keep responding longest, the best method
may be to reward them randomly rather than on any fixed pattern. In this way,
the dog always has the hope that the next reward is just one more good deed
away. Of course, applying these insights to the treatment of people is most
suggestive. Other examples in which randomness and probability arise occur
in game theory, the study of strategic decision-making. In game theory, often
the optimal strategy is one that involves intentionally including randomness.
Optimal business strategies or sports strategies often are probabilistic in
nature rather than deterministic. This feature complicates the question of
how to judge whether we have adopted a good strategy. When probability



is involved, even the very best strategy can have a poor outcome by
chance alone.

Einstein’s famous quotation, “God does not play dice with the universe,”
expressed his philosophical resistance to the probabilistic nature of quantum
mechanics. Quantum mechanics asserts that subatomic particles are not
best described as being in a certain place at a certain time but, instead, are
better described with probability distributions, suggesting that an electron
has some chance of being at any location in the universe at any moment.
In fact, randomness and probability lie at the heart of many of the scientific
descriptions of the physical and biological worlds. The basic idea of genetic
inheritance is that the parents randomly contribute different genetic material
to offspring, which then determines many features of the children. Evolution
relies entirely on probabilistic occurrences. But we do not need to look to
grand scientific theories to find examples of probability. We see probability
in the newspaper every day when we read a weather report that says there is
a 30% chance of rain. We’ll see what that statement actually means.

Probability is a fascinating study that has many real-world applications.
But one of the most intriguing aspects of all is that the basic meaning of
probability in the real world is not clearly agreed upon by probabilists. In a
rough sense, some view probability as measuring an individual’s assessment
or belief of the likelihood of a future event, while others view the probability
of a future event as a fact independent of any individual’s opinions. Another
kind of distinction is that some probabilists allow probability to be applied to
statements that do not entail randomness, such as “There was life on Mars,”
whereas others feel that probability should refer only to repeatable events
with random outcomes. The different views of probability are intriguing to
consider and, in some cases, have practical implications. Probability presents
us with a rich field of intriguing inquiry that contains questions and insights
that are mathematical, practical, and philosophical. m



Lecture 1: Our Random World—Probability Defined

Our Random World—Probability Defined
Lecture 1

It would be nice to say, “Well, our challenge in life is to get rid of
uncertainty and be in complete control of everything.” That is not going
to happen. One of life’s real challenges is to deal with the uncertain and
the unknown in some sort of an effective way; and that is the realm
of probability.

n many arenas, our understanding of our world involves processes and

outcomes that we view as the result of random chance. We read in the

newspaper that there is a 30% chance of rain. We talk about the chance
of winning the lottery. Over the last century, scientific descriptions of the
world have increasingly included probabilistic components. In quantum
mechanics, the very location of subatomic particles is viewed as a matter of
probability. The central concept of genetic inheritance and evolution is the
random transmittal of genetic material from parents to offspring. Random
happenings are those whose individual outcomes we do not or cannot know
in advance but that will display regularity in the aggregate. The amazing
accomplishment of probability is to put a meaningful numerical value
on things we admit we do not know. Our challenges in this course are to
understand what that numerical measure of chance is, to develop an intuition
about probability in real-life situations, and to see a myriad of applications
of probability in games, science, business, and many other aspects of life.

What are the chances? If you buy a lottery ticket, what are the chances that
you will be rich? If you walk across a golf course on a stormy day, what
are the chances that you’ll be hit by lightning? If you bet on red in roulette,
what are the chances you’ll win? If you buy stocks and bonds, what are
the chances those investments will pay off? If you have a fever and other
symptoms, what are the chances you have a serious disease? A hurricane
is spotted off the East Coast. What are the chances that it will cause great
damage? What are the chances that a child brought up by a drug addict will
become a criminal? What are the chances that an e-mail advertisement will
lead to a sale? All these examples are real-life situations in which we are
confronted with possibilities whose outcomes we do not know.



Dealing with the uncertain and the unknown is the realm of probability. One
of life’s challenges is to deal with the uncertain and unknown effectively.
Probability accomplishes the amazing feat of giving a meaningful numerical
description of the uncertain and unknown. It gives us information to act on.
Probability decisions can be as inconsequential as deciding whether or not to
take an umbrella if there is an 80% chance of rain. Making medical decisions
based on probability, however, can have life-and-death consequences.

In many arenas, our understanding of our world involves processes
and outcomes that we view as the result of random chance. Over the last
two centuries, scientific descriptions of our world increasingly include
probabilistic components. Physics, from thermodynamics to quantum
mechanics, involves questions of probability—molecules moving randomly
around and causing things to happen by the aggregate force of probabilistic
occurrences. In biology, genetics and evolution are both based on random
behavior. Often, underlying random behavior manifests itself in predictable,
measurable observations. Scientific descriptions frequently are probabilistic
analyses of random occurrences. The prevalence of probabilistic components
of scientific descriptions represents a major paradigm shift in our concept of
what scientific explanations are.

Probability describes what we would expect from random phenomena if
they were repeated many times. But the concept of randomness is subtle.
Outcomes of individual random events are unknown, but the aggregate
behavior of random events is predictable. The amazing accomplishment of
probability is to put a meaningful numerical value on things we admit we
do not know. When we roll a fair die, we do not know which side will land
uppermost on any individual throw. However, if we roll 60 dice, we expect
that each side would land up about 1/6 of the time. One of the difficulties of
probability is that we expect a certain result on average, but we also expect
to be off by a little. When we roll 60 dice, we do not expect each number to
appear exactly 10 times. One of the challenges of this course is to understand
what to expect from randomness. A principal goal of probability is to give
a numerical measure of chance. We will see a myriad of applications of
probability in games, science, business, and many other parts of life.



Lecture 1: Our Random World—Probability Defined

The course is organized as follows: In this lecture, we will introduce the basic
idea of probability. Lecture 2 explores the question: What is randomness?
Lecture 3 is about expected value. Expected value is a numerical measure
that assesses the value of various possible outcomes to a probabilistic
occurrence. Expected value is useful in making decisions, such as those
involving investments or other risks. Lecture 4 takes us on a random walk,
in which the direction we take at each step is randomly selected. Random
walks have applications in physics, biology, and finance. Lectures 5 and 6
show us that randomness and probability are central components of modern
scientific descriptions of our world in physics and biology. Lecture 7 explores
the world of finance, particularly probabilistic models of stock and option
behavior. Probability can be used to find answers to questions that seem
to have no random or probabilistic component to them. Lecture 8 explores
unexpected applications of probability. Lectures 9 and 10 discuss conditional
probability and some surprisingly counterintuitive examples of probabilities.
One view of probability is that it can describe a level of belief. Lecture 11
explores this perspective and the Bayesian view of probability. In the final
lecture, we will see some probabilistic conundrums that arise when there are
infinitely many possible outcomes to a random trial. We end by reviewing
how widely probability is applied in the world.

We begin our investigation of probability with gambling. Gambling presents
some clear examples of randomness. It was in the arena of gambling that
the mathematical investigation of probability first arose. In the 17" century,
a gambler by the name of Antoine Gombault, the Chevalier de Méré,
sought the advice of Pierre Fermat and Blaise Pascal, who developed the
fundamental concepts of probability. A die has six sides. In a fair die, we
presume that after rolling the die, any one of the sides is as likely to arise
as any other. To give a numerical measure to the probability of a fair die
coming up with a five, say, we note that there are six equally likely possible
outcomes; a five is one of these outcomes, so its probability of arising is
1 out of 6, or 1/6. In general, if there are n equally likely outcomes, then
the probability of one of those outcomes occurring is 1/n. Gambling games
present us with examples in which there are finitely many possible outcomes
to the probabilistic occurrence, that is, discrete probability.



The concept of probability arising from dice and coin examples leads us
to some basic definitions and observations about discrete probability. An
outcome 1is a possible result of a single trial, observation, or experiment
that we are considering. An event is a set of outcomes. For example, if
we consider rolling a die, getting a five is an outcome. Rolling an even
number is an event. Probability 1 (or, equivalently, 100%) means that the
event is certain. Probability 0 means that the event will not happen. If we
add up all the probabilities of all the possible outcomes of a trial, we get 1.
If the probability of an event is p, then the probability of the event’s not
occurring is 1 — p. For example, the probability of rolling a fair die and getting
a 5 is 1/6, so the probability of rolling a fair die and getting something other
than five is 1 — 1/6 = 5/6. In practice, it

is often easier to measure the probability  m—S———————
that an event does not happen; for Often, underlying random
this reason, we will use the 1 — p

. behavior manifests
observation frequently.

itself in predictable,

The basic principle of probability is ~ measurable observations.
simple when dealing with equally likely  — —
outcomes. Simply count how many total

outcomes are possible, count how many are in the event you are considering,
and divide. The problem is that “simply” counting is not simple. Let’s think
about poker. The value of hands is really an ordering of the probabilities
of getting the hands. What is the probability of getting all four aces when
dealt five cards? To compute the probability of being dealt all four aces,
we need to count the total number of five-card hands and compute the
total number of hands that contain all four aces. Here are the answers: The
number of possible hands containing all four aces is 52 — 4, or 48. The 4
represents the four aces, leaving only 48 cards that could be the fifth card
in a five-card hand. We can also calculate the number of possible hands:
52 x 51 x50 x 49 x 48 =311,875,200. But some of those hands will have the
same cards, only in a different order; thus, we calculate the total number of
different orderings of the five cards: 5 x 4 x 3 x 2 x 1 =120.



Lecture 1: Our Random World—Probability Defined

The number of distinct five-card hands is (52 X 51 x 50 x 49 x 48)/
(5 x4 x3x2x1)=2311,875200/120 = 2,598,960. The probability of
getting four aces is computed by dividing the total number of possible hands
with four aces (48) by the total number of possible hands: 48/2,598,960 =
0.00002. To compute the probability of being dealt a straight (see Glossary
for definition), we need to count the total number of five-card hands and
compute the total number of hands that contain a straight. Here are the
answers: The number of possible hands is 2,598,960. The number of possible
hands containing a straight is 10,200. The probability of getting a straight is
10,200/2,598,960 = 0.004. To compute the probability of being dealt a flush,
we need to count the total number of five-card hands and compute the total
number of hands in which all the cards are in the same suit. (Again, straight
flushes are not counted as flushes.) Here are the answers: The number of
possible hands is 2,598,960. The number of possible hands containing a
flush is 5108. The probability of getting a flush is 5108/2,598,960 = 0.002.
Because the probability of being dealt a flush is less than the probability of
being dealt a straight, a flush beats a straight in poker.

In summary, if you have an experiment or a trial that has equally likely
outcomes, to compute the probability of some event, you count the number of
outcomes in the event and divide by the total number of outcomes possible.
That fraction is the probability of that event. m

Suggested Reading

Edward B. Burger and Michael Starbird, Coincidences, Chaos, and All That
Math Jazz: Making Light of Weighty Ideas.

, The Heart of Mathematics: An invitation to effective thinking,
2m ed.

lan Hacking, The Taming of Chance.
Sheldon Ross, 4 First Course in Probability.



Questions to Consider

1.

Do you think that probability will play an increasing or decreasing role
in explanations in science, business, social science, and other fields as
they continue to develop?

Three couples, that is, six individuals, are seated randomly around a
round table. What is the probability that the members of at least one
couple are seated next to each other?



Lecture 2: The Nature of Randomness

The Nature of Randomness
Lecture 2

The basic goal of probability is to describe what it is that we should expect
from randomness, and so in this lecture we’re going to try to undertake
an understanding in some detail of the nature of random processes.

hat is random? Can we ascertain whether phenomena in the

world are best described by randomness or are better described

by finding some underlying deterministic reason for what
we observe? Questions about what is random arise in considerations of
everything from a coin toss to dots on a page, stars in the sky, or the digits of
n. Trying to produce lists of numbers that appear random is an unexpected
challenge. If we look at a list of digits, can we determine whether or not
they were generated by a random process? Many tests about randomness can
ferret out the signature of nonrandom generation. One of the paradoxes of
randomness is that within the random, we will find surprising instances of
patterns that occur by chance alone.

One goal of probability is to describe what to expect from randomness. The
challenge is to understand in some detail the nature of random processes.
Surprisingly, clear order comes from random activities. Randomness refers
to situations in which we don’t know any individual result, but we have a
sense of what will happen in the aggregate, that is, if an experiment or a trial
is done over and over again. This idea is captured in a theorem called the
Law of Large Numbers. We can illustrate this theorem ourselves by doing
various experiments, such as rolling a die and calculating the percentage of
times we roll a three. The more times we roll the die, the closer we come to
the predicted probability of rolling a three, 1/6, or 0.1667. Throwing the die
6 times, we might get no threes, but in rolling the die 60,000 times, we come
very close to the expected 0.1667.

The Law of Large Numbers works even when referring to relatively rare
events If we draw three cards at random from each of three decks, the
probability that the three cards will be identical is quite small: 1/52 x 1/52
= 1/2704, or 0.00037. After 2704 trials, we got no such matches, but after

10



2,704,000 trials, we got 1037 such matches: 1037/2,704,000 = 0.00038, very
close to the probability.

There are counterintuitive aspects of what is produced by randomness. A
visual example illustrates this phenomenon: Working with a square, we pick a
place on the vertical axis at random and on the horizontal axis at random and
put a dot there. We do this 12 times to produce 12 dots. We expect the dots to
be more evenly distributed rather than the clusters and gaps we see. We can
also see other patterns in random arrays. Look at the night sky, for example,
and see the various constellations that have been identified for centuries.
Flipping a coin also illustrates randomness. First, we flip a coin and record
the results, heads (Hs) and tails (Ts), over 200 flips. Then, we ask a human
being to write down a random list of 200 Hs and Ts. Strings of repeated Hs
or Ts in the flips show up more often than in the human-generated list of
HTs. Specifically, when you flip a coin 200 times, the probability of having
a string of six Hs or six Ts is more than 96% and of having a string of five
Hs or Ts is 99.9%. Our simulation shows that even if
meesssss———— you have flipped 10 Hs in a row, the next flip is just
One goal of as likely to be H again as it was the first time you
probability is to flipped the coin. The coin has no memory.
describe what Rare events are expected in probability. As we have
to expect from seen, the probability of getting any particular five-
randomness. card hand from a deck of cards, whether an ordinary
meesssssssssm ~ hand or a royal flush, is 1/2,598,960. The probability
of winning the Powerball lottery is 1/146,000,000,
but someone is very likely to win. Even very rare events are almost certain
to happen given enough opportunities. In 1929, the astronomer Sir Arthur
Eddington wrote, “If an army of monkeys were strumming on typewriters,
they might write all the books in the British Museum.” It is said, then, that
if monkeys randomly type, they will eventually write Hamlet. Let’s look at
this further. If, since the time of the Big Bang, a billion 18-character patterns
were generated per second on a 100-key keyboard, chances are less than
1/1,000,000,000 that “To be or not to be” will be generated. An enterprising
author made money with an observation a few years ago when he wrote The
Bible Code. For example, he found that if he looked at every 1945" letter
somewhere in the Bible, it spelled out “Atomic holocaust, Japan, 1945.”

11



Lecture 2: The Nature of Randomness

Mathematicians found mail and bomb in Ted Kaczynski’s manifesto.When
we look retrospectively, things that appeared to be random can be explained.
Stock movements can be explained in retrospect. Some psychics and stock
analysts make correct predictions by chance alone.

How can we distinguish a set that was created from a random process versus
some other method? The strategy is to analyze what patterns we would expect
to occur by random chance. Suppose we consider flipping a coin. Roughly
half the results should be Hs and half Ts. As we flip more coins, that fraction
should get closer and closer to 50%. We can get more refined and determine
what fraction of HHs or TTs we should expect and so forth. We can compute
the probability of each pattern. By seeing whether the appropriate frequency
of that pattern appears or does not appear, we gain evidence about the
likelihood that the list of Hs and Ts was generated randomly.

Some examples bring up challenging philosophical questions about the
meaning of randomness. Consider the first 10,000 digits of m. The digits
look random from the point of view of the tests concerning the existence of
patterns, yet we know they are completely determined.

Digit Number of Appearances in
the First 10,000 Digits of &

968
1026
1021
974
1012
1046
1021
970
948
1014

Ol Q||| WD~ |O
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What kinds of events are actually random in the world and which
are deterministic? These are issues that present us with a real
philosophical challenge. m

Suggested Reading

Ivars Peterson, The Jungles of Randomness: A Mathematical Safari.

Questions to Consider

1. Do you think that analyzing or modeling some phenomenon as if it were
random devalues or depersonalizes the situation? Do you think that such
an analysis skirts the actual meaning?

g

On learning that some girl in the neighborhood has committed a minor
crime, how do you react to a statement such as: “Well, it was bound to
happen; statistics show that about 20% of kids do that”?



Lecture 3: Expected Value—You Can Bet on It

Expected Value—You Can Bet on It
Lecture 3

There are consequences to different alternatives of the future, and we
have to sort of weigh them.

hen we bet money in a gambling game, such as roulette, we know

the probability of winning, and we know what our winnings will

be if we win. We do not know, however, the specific outcome.
If we repeated that exact bet millions of times, we would win a predictable
fraction of the time; thus, the average win or loss per bet is a predictable
expectation over the long haul. That is to say, while we do not have
deterministic regularity, we have statistical regularity. This average win or
loss is called the expected value. As we saw in the last lecture, the Law of
Large Numbers tells us that as random trials are repeated more and more,
the fraction of times that a particular outcome occurs will more accurately
reflect the probability of that outcome, and thus, the actual average win or
loss per bet will become close to the expected value. The concept of expected
value allows us to assess the wisdom of various random enterprises that have
payoffs or consequences. Betting on red in roulette, buying insurance, or
buying a lottery ticket are all susceptible to expected-value analysis. As is
common with probability topics, expected-value considerations lead us to
some interestingly paradoxical situations. Expected
value is our first attempt to understand what kind — E—
of regularity these probabilistic experiments have. Many daily-life

decisions involve

Many daily-life quISIOIlS 1nvolve. randomness. randomness.
Buying stock, having surgery, studying for a test, E S ————
and buying insurance all involve making such
decisions. How do we make these decisions? We consider hypotheticals and
perform a sort of “cost-benefit analysis” for each possible outcome. One
math strategy is to start with ordinary thinking and abstract it. As Albert
Einstein said, “The whole of mathematics is nothing more than a refinement
of everyday thinking.” We need to balance the likelihood of the various
outcomes with the cost or benefit of each, which leads to the concept of
expected value.

14



Let’s use gambling, specifically roulette, to look further at this concept.
There are 38 possible outcomes in American roulette. Betting $10 on a
single number will pay $360 for a winning bet. The probability of winning is
1/38; thus, if we place a bet 38,000 times on 13, we should win about 1000
times (and lose 37,000 times). Therefore, we should win a total of $360,000.
However, we would have paid out $380,000. Our loss is $20,000; per bet,
the average loss is —$20,000 divided by 38,000 bets, or —$0.53. Hence, the
expected value of the $10 roulette bet is —$0.53. On average, the bettor will
lose 53 cents per bet. Expected value is an average. We have a collection of
outcomes, and we have a probability for each outcome’s occurring. Each
outcome has a value associated with it. In this case, for 13, the value is $350,
and for the other 37 numbers, it is —$10 (the money bet on the non-winning
number). Let O,, O,, O,, ... denote the possible outcomes. Let P(O) denote
the probability of an outcome and V(O) denote the value of an outcome.
Then, the expected value is: P(O)V(O,) + P(O)I(O,) + P(O)V(O,) + ...
and so on through however many possible outcomes you have.

If you bet $10 on red, your chances of winning are 18/38 and of losing are

20/38. The payout of a $10 bet on red is $20, for a gain of $10. Therefore,
the expected value of the $10 bet is:

18 20
—($10) +—(-$10) =-$0.53
38($ )+38( $10)=-$

Casinos count on the Law of Large Numbers to ensure their profits, as the
table of roulette simulations illustrates.

Repetition Average Gain in | Average Gain in
10,000 Bets 1,000,000 Bets
1 -0.41 -0.50
2 —0.66 -0.54
3 —0.56 —0.52
4 —0.65 —0.52
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Repetition Average Gain in | Average Gain in
10,000 Bets 1,000,000 Bets
5 —0.41 —0.51
6 —-0.70 —0.55
7 —0.56 —0.52
8 —0.44 -0.52
9 —0.51 —0.53
10 —0.58 —0.54

When we made 10 repetitions of 10,000 bets on red, the average is very
close to the predicted average loss of —$0.53. When we made 10 repetitions
of 1,000,000 bets on red, the average is even closer to the predicted loss
of —$0.53.

Let us look at unexpected instances of expected value. Suppose someone
plays roulette 35 times, betting on one number each time. The expected
value of each bet is —$0.53. And the expected total value of the 35 rounds

=35 (;—8350+§—;(—10)j , or —$18.42. Surprisingly, the probability that a

35
bettor would be ahead after 35 rounds is 1— (i—;j ,or0.61.

However, the bettors who are ahead are only slightly ahead, and the people
who are behind have lost $350. Because the expected value gives weight, the
expected value is negative.

Here is another example. Let’s say you own a pub and you have a dart game
with four rings. You wish to have the payoff be $4 for hitting the inner circle,
$3 for the next largest ring, $2 for the next largest, and $1 for hitting the
large outermost ring. You assume anyone who throws the dart has an equal
chance to hit anywhere. You calculate the area of each ring and find that the
largest has 44% of the area, 31% for the second largest, 19% for the third,
and 6% of the area is in the small center.
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You can calculate the average expected payoff:
0.06x%$4+0.19x$3+0.31x$2+0.44x$1=$1.87

If you decided to make the game completely fair, you would charge $1.87
per dart thrown, because a fair game is one where the expected value is 0.

Let us consider another unexpected surprise in dealing with the expected
value. What is the expected number of rolls of a die until a five appears? If
we roll the die 6000 times, we expect 1000 of those rolls to result in a five.
The simulation results are very close to 1000. Now we ask what the average
gap is between fives in that long list of 6000 numbers. The answer is 6. We
have 6000 numbers, around 1000 of which are fives. But what if we take the
long list of 6000 numbers and randomly choose any point on that list and ask
ourselves what the gap is between fives? What is the expected value of the
length of the gap (the number of spaces between two consecutive fives)? The
answer is 11, not 6. The reason the answer comes out bigger than 6 is that we
are more likely to choose long intervals than short intervals. Likewise, if we
cut a string to represent the various lengths on the list between fives and mix
the pieces in an urn, we are more likely to choose a longer piece from the urn
than a shorter one. m

Suggested Reading

Edward B. Burger and Michael Starbird, The Heart of Mathematics: An
invitation to effective thinking, 2™ ed.

Sheldon Ross, 4 First Course in Probability.
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Questions to Consider

1.

18

Suppose you play a game with a weighted coin that lands heads up 2/3
of the time and tails up 1/3 of the time. If you are paid $6 if it lands
heads and $4 if it lands tails, what is the expected value of playing the
game once?

Expected value does not mean that the expected value is what will
happen. When lotteries have very high prizes, the expected value
of buying a $1 lottery ticket can be $2 or more. Even under those
circumstances, why is it not a good investment for you to mortgage your
house and buy lottery tickets?



Random Thoughts on Random Walks
Lecture 4
B

Life, of course, is the source of most mathematical ideas. We look at
things that happen in the world, and then we try to abstract from those
some principles that become the mathematics that we’re trying to
develop. This is certainly true in the case of talking about probability
and randomness.

uppose you want to go for a walk, but you feel in a particularly

indecisive mood. You decide to walk along a straight north-south road

while letting fate decide your direction at each block. You take out a
coin and flip it. If it is heads, you walk one block north; if tails, one block
south. At each block, you make that random choice. The path you take is
called a random walk. Many intriguing questions arise in this indeterminate
perambulation: Will you ever return home? Will you ever venture 100 blocks
away? The analysis of random walks helps us to analyze real-life situations,
such as counting ballots during an election, and it explains the sad fate of
persistent bettors known as the gambler’s ruin.

This lecture addresses the phenomenon of random fluctuations. Examples
of random fluctuations include the stock market, ballots in an election, coin
flipping, genetic drift, and Brownian motion. The simplest example is the
random walk. As we leave home (position 0), if we flip a coin and get heads,
we go one block north (position 1); if we flip tails, we go one block south
(position —1). When we have walked one block, we then flip the coin again
and go another block north or south, depending on the result, and so forth.
We can see this walk recorded on a graph. How far away do you get? The
answer is probabilistic because it depends on flips of a coin. You might also
ask, when we take a random walk, what is the probability that, from position
1, we will return to where we started.

To answer that question, we can compute as follows: P = (1/2) + (1/2)Q, in
which P is the probability that starting at 1, the walk eventually gets back
to 0, and Q is the probability that starting at 2, the random walk eventually
gets to 0. We can ask what the probability is that starting at position 2, we
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Lecture 4: Random Thoughts on Random Walks

will return to where we started. To get from 2 to 0, the walk must first get to
1 (probability P), then eventually to 0 (probability P). Thus, O = P%, and we
arrive at the equation:

1 1
:—+ = —4 —
2 Q 2 2

Working out the equation leads to the result P = 1; the probability is 100%
that we will indeed return to 0. Although some random walks never return
to where you began, the fraction of walks that have not returned becomes
closer and closer to 0 as you take longer walks. Thus, the probability of never
returning during an infinitely long walk is 0. Another question is: What is
the probability that we will eventually get 100 blocks away from where we
started? The surprising answer is again P = 1.

The gambler’s ruin is a variation of a random walk. A gambler starts with
$2000. Each bet is $200, with even odds. Let’s say the game involves flipping
a coin, with heads meaning the gambler wins and tails meaning the gambler
loses. As we have seen in the random walk, the probability = 1 that you will
eventually get back to 0. This means that the gambler will eventually lose
everything, even in a fair casino.

Bertrand’s ballot theorem deals with an election between two candidates in
which the winner, A, receives a votes, and the loser, B, receives b votes,
where a (52) is greater than b (47). Suppose the votes are tallied by drawing
them out of the ballot box one by one, adding 1 to the proper person’s score.
What is the probability that the eventual winner will always be ahead, from
the very first vote counted?

This problem can be rephrased as a graphical problem. Consider the graph
whose horizontal axis is time (or ballot number) and whose vertical axis is the
amount by which the eventual winner is ahead. The answer to the question of
what the probability is that the eventual winner will always be ahead, from
the very first vote counted, turns out to be (a — b)/(a + b).

20



This discussion brings up the question of potential ties. Suppose you wish to
hire a tennis pro. Two candidates have played one match against each other
each day for the past year, keeping a running tally of how many matches
each has won. The tally shows that one player was ahead for the entire last
nine months, so that player seems to be better. By comparing this situation
with randomness, we can test the strength of that conclusion. Knowing what
to expect from randomness informs our interpretation of the results. Let us
consider the case of randomness in which, for 366 days in a row, two people
flip a coin to win or lose, and let’s see where we might expect the last tie to
occur. We find, in fact, a surprisingly high probability of one person being
ahead for most of the year. In fact there is a 1/2 probability of one person
being ahead for the entire last half of the
year and a 1/3 probability of one person
Examples of random being ahead for the entire last nine months
fluctuations include the of the year—Dby luck alone.

stock market, ballots
in an election, coin

If our case were expanded to north-south-
east-west, then we would have a two-
flipping, genetic drift, dimensional random walk. Such a random
and Brownian motion. walk has some interesting properties.
Eeeeeseeesssss—————  \We can ask again: What is the chance of

returning to the origin? As with a one-
dimensional random walk, the probability of returning is 1. However, the
rate at which we return is not so quick. In the 30 simulations we ran, it took
anywhere from just 4 steps up to more than 100,000,000 steps before we
returned to the origin. Peculiarly enough, in the case of a three-dimensional
random walk, which allows up or down as an additional choice, we have
only a 35% chance of returning to the origin. m

Suggested Reading

John Haigh, Taking Chances: Winning with Probability.
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Lecture 4: Random Thoughts on Random Walks

Questions to Consider

1. Suppose as you finish grocery shopping there are two checkout counters
open, and both seem to have an equally long line. You pick a line. Does
it seem that more often than not you pick the slow line? How does the
fact that ties are less frequent than our intuition would predict relate to
this situation?

2. Suppose two people play a game where one flips a coin and the other
guesses how it will land. If the person guesses correctly, the guesser gets
$1 from the flipper; if the guesser is wrong, the flipper gets $1 from the
guesser. Suppose the flipper starts out with $10 more than the guesser.
What is the probability that at some time in the future, if they play
forever, they will have equal amounts of money?
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Probability Phenomena of Physics
Lecture 5
D ]

Today’s lecture concerns the role of probability in descriptions of the
physical world. The probabilistic analysis of random behavior lies at the
very heart of how we understand physical phenomena, from everything
from quantum mechanics to the weather.

uantum mechanics describes the location of a subatomic particle

of physics as a probability distribution. Our intuition would prefer

elementary particles to be more like tiny round balls, each of which

is at some specific place at each moment. But quantum mechanics
suggests that an electron has some chance of being at any location in the
universe at any moment. Interestingly enough, Einstein philosophically
opposed the probabilistic nature of quantum mechanics. Weather predictions
give us probabilistic descriptions of our world that have more obvious
consequences. We might read, “There is a 30% chance of rain tomorrow.”
Then our question becomes: What exactly does that mean?

The probabilistic analysis of random behavior lies at the heart of physical
phenomena, from quantum mechanics to the weather. One of the most basic
features of understanding the world is that physical matter is made up of
atoms and molecules. At the turn of the 20" century, the scientific community
was not so clear that atoms and molecules actually existed. It turned out that
strong evidence for their existence was an application of probability, and one
of the major players in that analysis was Albert Einstein. It was Einstein’s
theoretical work on Brownian motion that allowed experimentalists to do
actual measurements that helped confirm the reality of atoms and molecules.
Brownian motion was discovered in the early 1800s by botanist Robert
Brown, who made microscopic observations of grains of pollen on the
surface of water and noticed that these grains appeared to constantly and
randomly move in a jittery way on the surface of the water. In his 1905
paper, Einstein hypothesized that Brownian motion was caused by actual
atoms and molecules hitting the grains of pollen, impelling them to take a
“random walk” on the surface of the liquid. Einstein wrote down a formula
that predicted what distance a piece of pollen would move on average per

23



Lecture 5: Probability Phenomena of Physics

unit time. Experiments accorded with Einstein’s predictions and, thus, were
strong evidence for the actual existence of atoms. In a sense, Einstein’s work
encouraged the mode of reasoning that led to the inherently probabilistic
nature of quantum mechanics. In quantum mechanics, the most fundamental
objects that make up matter are to be viewed, not as being in one location at
one time, but instead, as having a probability of being anywhere. Einstein
never accepted the probabilistic nature of quantum mechanics. Probability
plays a central role in physical theories, from quantum mechanics up
the ladder of different sizes of interacting matter to chemistry and into
macroscopic matters, such as the weather, which is where we now turn
our attention.

Suppose you read that there is a 30% chance of rain in your region tomorrow.
What should that statement mean? First, we need to dispose of the issue
of threshold, that is, how much rain is rain. The answer is 0.01 of an inch.
Second, what does it mean that there is a 30% chance of rain at one spot?
It means that on about 30 out of 100 days in
which the weather circumstances are like they
are today, you would expect at least 0.01 inch of At the turn of

rain in that spot. the 20t century,

the scientific

The problem arises when we hear we have a
30% chance of rain in a whole region. Because
there are different points in the region, we must
deal with these variations. The simplest case isif ~ and molecules

the region is very small and very homogeneous  actually existed.

in its character. In that case, the conditions are E—
indeed the same throughout the region for the

30% probability of rain. In another case, though, you might have 50 acres
out of a 100-acre region where the probability of rainfall is 40%, and in the
other 50 acres, it is 20%. The expected value of the probability of rain for
the whole region is 30%. In another case, though, you might have 30 acres
out of a 100-acre region where the probability of rainfall is 100%, and in the
other 70 acres, it is 0%. Again, the expected value of the probability of rain
for the whole region is 30%. In another case, you might have 25 acres out

community was not
so clear that atoms
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of a 100-acre region where the probability of rainfall is 40%, 50 acres where
the probability of rainfall is 30%, and in the other 25 acres, it is 20%. Again,
the expected value of the probability of rain for the whole region is 30%.

The consequence to the above conclusions is that on average, the amount of
the area that will get rain is 30%. In other words, suppose for each day of 10
days, we knew how many square inches were rained on; we would add all
these square inches, then divide by 10 to get 30%. For example, let’s use a
familiar example where 30 acres out of a 100-acre region always get rain,
and in the other 70 acres, it never rains. Again, on average, 30% of the region
gets rain. Suppose now that every point in the region has a 30% chance of
rain. We can look at each tiny square inch and record rainfall for 10 days
there. We would expect to have rain on 3 of those 10 days. Expanding our
region to 10 square inches over 10 days, we see that every square inch would
expect to be rained on for 3 of the days. Thus, the number of square inches
rained on averaged over the 10 days is 3 square inches, which is 30% of the
total area. We would get the same result if we looked at a situation where
half the region gets 40% chance of rain and the other half, 20%.

The definition of probability of precipitation is tricky. The official definition
from the National Weather Service is, at best, misleading: “Technically, the
probability of precipitation (PoP) is defined as the likelihood of occurrence
(expressed as a percent) of a measurable amount (.01 inch or more) of
liquid precipitation (or the water equivalent of frozen precipitation) during
a specified period of time at any given point in the forecast area. Forecasts
are normally issued for 12-hour time periods.” The definition should be
written: “Technically, the probability of precipitation (PoP) is defined as the
likelihood of occurrence (expressed as a percent) of a measurable amount
(.01 inch or more) of liquid precipitation (or the water equivalent of frozen
precipitation) during a specified period of time at a random point in the
forecast area. Forecasts are normally issued for 12-hour time periods.” A
multiple-choice question given to the public to determine if they understand
the phrase “The chance of rain is 30%” proves that most Americans do not
understand the definition of probability of precipitation. m
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Suggested Reading

lan Stewart, Does God Play Dice? The New Mathematics of Chaos.

Questions to Consider

1. A consequence of quantum physics is that there is a non-zero probability
that the moon will spontaneously fall on our heads tomorrow. Why
shouldn’t we be worried about that possibility?

g

Currently, weather prediction is viewed as a probabilistic enterprise. Do
you think that with better knowledge of weather patterns, the randomness
will be removed and weather prediction will become deterministic? The
theory of mathematical chaos suggests not.



Probability Is in Our Genes
Lecture 6
D ]

The basic concept of genetics is that the genetic material from each of
the parents is randomly combined; that is, part of the genetic material
of the father and part of the genetic material of the mother are combined
to become the genetic material for the offspring. And the offspring then
have different traits according to which material was contributed by
the two parents.

ne of the most basic issues in biology is to describe how

characteristics of parents are passed on to their offspring. The basic

idea is that each parent randomly contributes part of that parent’s
genetic material to the offspring. The combination of genetic material
received from the parents determines characteristics of the offspring. Because
randomness is centrally involved in the passing down of genetic material,
genetics, the science of inheritance of traits and characteristics, is modeled
probabilistically. The simple Mendelian model of dominant and recessive
genes provides a probabilistic answer to the question: What traits will the
offspring of two specific parents have? Then, probability is used to show
the distribution of traits over a whole population and to describe how the
characteristics of the whole population will alter through a random process
called genetic drift. Probability lies at the very core of biological descriptions
of mutation and evolution.

Genetics, the science of inheritance of traits and characteristics, is modeled
probabilistically. This lecture discusses three probabilistic aspects: the
Mendelian model of genetics, genetic drift, and mutation and evolution.

The simple Mendelian model of dominant and recessive genes is the basic
model of inheritance. For the sake of simplicity, we will use brown and
blue eye color to illustrate this concept, and we will make the simplifying
assumptions (though they are not true for real people) that a single gene
determines eye color and that there are only two possible colors, blue and
brown. The Mendelian model gives a probabilistic answer to the question:
What traits will the offspring of two specific parents have? Different versions

27



Lecture 6: Probability Is in Our Genes

of a given gene are called alleles. In our example, these would be brown (B)
and blue (b). People will have BB alleles, Bb alleles, or bb alleles. Each
parent contributes one allele for a given gene, either B or b. If either of the
alleles in the offspring is the dominant type (B), its trait will be expressed.
Otherwise, the recessive trait (b) is expressed. Therefore, the probability
of the recessive trait (b) being expressed is 1/4 if both parents carry one
recessive allele, as shown in the chart that follows.

Parent B b
B BB Bb
b Bb bb

The chart below shows the percentage breakdown of the offspring (in the
shaded area) if we imagine that 60% of the alleles in the parent population
are for brown eyes and 40% are for blue eyes.

Parent B b
Alleles 60% 40%
B BB Bb
60% 36% 24%
b Bb bb
40% 24% 16%

If we imagine a representative population of 100 offspring, each with two
alleles (BB, Bb, or bb), note that the proportion of brown to blue alleles
has not changed from the original: 36B + 36B + 24B + 24B = 120 B alleles
(60% of 200) 24b + 24b + 16b +16b= 80 b alleles (40% of 200). The Hardy-
Weinberg equilibrium theorem shows that even if you have a recessive
characteristic, it will not disappear. Instead, there is a stable percentage that
remains as generations pass. The Hardy-Weinberg equilibrium theorem
applies to recessive disorders as long as those disorders do not have an
impact on reproductive success.
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Probability plays a central role in viewing genetics over the time scale of
tens of thousands of years. Genetic drift alters the percentage of alleles
that are dominant for a given trait. By random chance, the percentage of
dominant alleles in the next generation is different. The expected value
of the percentage in the next generation is the same as the percentage in
the present generation. But the actual percentage is often a bit different by
chance, as our simulations show. This changing percentage is called genetic
drift, and it can be modeled using the idea of a random walk. Genetic drift
is most prominent when the population is small. It happens much more
slowly in larger populations. All of this assumes that no natural selection
is going on that affects the proportion of the allele. In other words, no trait
has an advantage in the number of offspring that
a person with that trait can reproduce. If such an
advantage exists—for example, if each blue-eyed ~ The simple

parent has an extra child, that selective advantage Mendelian model

quickly takes over. of dominant and

recessive genes

Another way that genetic material changes is
through mutations. A mutation is a stable change is the basic model
in the genetic material, brought about by various  of inheritance.
means, transmitted to offspring. Mutations to /S
nonessential portions of the DNA are useful

for measuring time (the molecular clock). It is assumed that mutations to
nonessential aspects occur with a uniform probability per unit of time in a
particular portion of the DNA. If P is the probability that a single segment of
nonessential DNA has no mutations in a year, then P” is the probability of no
mutations in a segment of DNA happening over Y years. On the average, if
you have two individuals who had a common ancestor many generations ago,
you would expect them to have about the same percentage P” of segments of
nonessential DNA that had no mutations. Assuming that mutations are so
rare that it is very unlikely that a mutation in the same segment has occurred
in the two individuals, the percentage of segments that are mutated in one or
the other is, on average, 2(1 — PY). This is an estimate of the percentage of
segments that would be found different if comparing two individuals with
a common ancestor Y years ago. Using this kind of probabilistic inference,
we can estimate that the most recent common female ancestor of all living
humans lived about 150,000 years ago.

29



Lecture 6: Probability Is in Our Genes

Let’s look at a hypothetical situation that has a probabilistic aspect: universal
HIV testing. About 1% of the time, HIV tests give a false-positive result.
Of those who have HIV, their tests will come out positive 95% of the time.
If someone has a positive result, what is the probability that that person has
HIV? Let’s look at the numbers: Let’s say the population of the United States
is about 300,000,000, of which about 500,000 people are HIV-positive. Of
the 500,000 who actually have the disease, the test will come out positive
95% of the time, which equals 475,000 cases. There are 299,500,000 (that
is, 300,000,000 — 500,000) people who do not have the disease. Of the
299,500,000 people who do not have the disease, the test will come out
falsely positive 1% of the time, which equals 2,995,000 cases. Thus, the total
number of people receiving a positive test result is: 475,000 + 2,995,000 =
3,470,000. But of the 3,470,000 who get positive test results, only 475,000
actually have the disease. Therefore, if you get a positive test result, your
probability of having the disease is 475,000/3,470,000, which is less than
15%. This is an example of a probabilistic anomaly that is an artifact of
giving universal testing for a rare disease when the tests have a significant
possibility of giving false-positive results. m

Suggested Reading

Brian Charlesworth and Deborah Charlesworth, Evolution: A Very
Short Introduction.

Questions to Consider

1. Assume that for some gene, there are more dominant alleles than
recessive alleles in the current population. How can you reconcile
the following facts: First, that the expected value for the percentage
of a recessive allele in the next generation’s population is its current
percentage, and second, the percentage of that allele is probabilistically
expected to become only half as great as it is now or twice as great as it
is now at some point in the future?

g

How could the rate of change in nonessential parts of DNA be used to
disprove the theory of evolution if it were false?



Options and Our Financial Future
Lecture 7
D

Predicting the future prices of stocks can have a significant impact on
how we view our whole future financial security. The question is: How are
we going to model the behavior of stocks or other financial instruments
so that we can have a guess as to whether or not our retirement fund is
going to be adequate to keep us living in the lap of luxury?

e’ve already discussed several applications of probability to

gambling, and it seems natural that probability theory would arise

in an area where great gambles are made—Wall Street. Predicting
the future prices of stocks can have a significant impact on our view of our
future financial security. Starting in 1900, a Frenchman, Louis Bachelier,
devised the first model of stock prices that involved probability, which is
fundamental to modern finance. In this lecture, we will also discuss options
contracts, which are fundamental to modern finance. In fact, more money is
traded in options than in stocks.

Simply put, an option contract is an agreement between two people that gives
one the right to buy or sell a stock at some future date for some preset price.
Options are used as speculation, as well as a way to hedge risk, but it is a
challenge to derive a rational price for such a contract. For quite some time,
option pricing was viewed as a form of gambling. After the Black-Scholes
theory was developed, the option price was viewed as an investment. As we
will see from the example of Long-Term Capital Management, however, the
application of sophisticated probability theory is not without its risks.

The world of finance is full of uncertainty, as is the world of gambling.
Among many other financial issues, the future prices of stocks and options
are definitely uncertain. If we want to evaluate whether our retirement fund
is adequate, we need to consider what might happen to our investments
and their values. We can take our financial portfolio and run probabilistic
simulations. The probabilistic factors might include inflation or world events.
Decisions about how much people are willing to pay for stocks are human
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decisions that are not predictable. Randomness and probability play central
roles in the determination of what our financial future is going to be.

How are prices of stocks or options modeled by financial mathematicians?
The model Bachelier devised was basically a starting price plus a random
walk. In this model, the price varies purely randomly from its current price
with equal likelihood of going upward or downward; underlying trends do not
appear in the model. In reality, there may be some reason to believe that an
asset will increase in value. For example, consider a cattle ranch that has lots
of food and today has a small herd of cattle. We expect growth. The value of
that asset will rise. Other assets, such as heating

oil and corn, have cyclical trends. More robust, T T —— E—
sophisticated models of future stock prices were If we want to
developed that include a drift component. One
model (Samuelson, 1960) incorporates three
components: today’s price, plus a function
that relates to how the stock price is expected IS adequate, we
to change (the drift), plus a random walk  need to consider

feature (volatility). what might happen
to our investments

and their values.
|

evaluate whether
our retirement fund

An option is a contract that gives the holder of
the option certain specified rights. This might be
the right to buy or sell a security or a commodity
at a specified price on a specified future date.
We will talk about the simplest kind of options, namely, a piece of paper
that says I can buy one share of XYZ stock on April 30 for $100, even if at
that time, XYZ is trading for a higher price. The possibility that XYZ will be
worth more than $100 is what gives the option its value. If XYZ is trading
for less than $100 at that time, the option is worthless. Options can be used
as speculation and as a method to hedge risks. Options used as speculation:
If I contract the right to buy stock at a future time at $100, I am betting that
the stock will actually exceed that price, so I can resell it at a profit. Options
used as a hedge against risks: Let’s say I need copper for my business. I have
a business plan, and I know I need a certain amount of copper at a certain
price. I can buy an option to ensure that, at a future time, I can buy copper at
today’s price.
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How much should someone pay for an option? The idea of finding a
rational price for options was developed in the late 1960s and early 1970s
and allowed the options market to be created. Let’s take an example: I have
bought an option that states that if XYZ stock, which now sells for $87,
gets to $100 in the future, you pay me $1. To determine how much I should
pay to acquire that option, we can work out an expected-value analysis: If
I believe the probability of the stock reaching $100 is 90%, then the option
would be worth 90 cents. But someone else might feel that the option would
be worth only 50 cents. The rational price is one that enables the seller of the
option to eliminate the risk and to ensure that he has the resources to pay out
the $1 if the stock reaches $100. If another person buys 1/100 share today,
then he owns 1/100 of the stock. And if the share reaches $100, the seller
of the option can pay the $1 by selling the 1/100 share. Thus, the rational
price for the option is the cost of 1/100 share of our $87 XYZ stock today,
or 87 cents.

Let us look at another example: Suppose an option is associated with a
stock that today is selling for $100 per share, and we are talking about the
option to buy a share at $100 one month from today. We make a simplifying
assumption: The price will be either $110 or $95 one month from today. This
concept of looking at a finite collection of possible future values at discrete
moments of time is called the Cox, Ross, and Rubenstein (CRR) tree. The
CRR tree can be used to price options. Here, we try to replicate the risk
of the option. We are going to buy a certain number of shares of stock and
have a certain (negative) amount of cash in our portfolio. The value of our
portfolio will be equal to the value of the option in one month’s time. In
other words, we are trying to quantify the risk itself.

Here’s the math:

x = number of shares in the portfolio

d = amount of cash in the portfolio

If the price goes to $110, the option is worth $10.
If the price goes to $95, the option is worth $0.
110x+d=10 95x+d=0
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Our solution is:

x= zandd:$—63l.
3 3

In other words, a portfolio containing 2/3share and owing $63.33 will have
the same value as the option one month from now. Thus, the rational value of
the option is the cost of 2/3 share ($66.67) minus $63.33, or $3.33.

This type of analysis leads to the Black-Scholes model. Before the Black-
Scholes model, these contracts were viewed as a pure gamble. The main
result of the Black-Scholes theory is that the option price can be viewed as
an investment, which led to the establishment of trading houses, such as the
Chicago Board Options Exchange, created in 1973.

The application of sophisticated probability theory is, however, not without
its risks. In 1994, the hedge fund Long-Term Capital Management (LTCM)
began its historic money-making run, using advanced mathematics from
top mathematicians. The man in charge was John Meriwether, a legendary
head of bond trading of Salomon Brothers in the 1980s. He brought Myron
Scholes and Robert Merton to serve on the Board of directors of LTCM.
They later won the Nobel Prize in Economics for their work on options
pricing. LTCM used complicated mathematical strategies and sophisticated
models to trade bond products. In its first three years, to take full advantage
of the bond mispricings their models found, LTCM borrowed heavily. In
1998, LTCM collapsed. The Federal Reserve Bank of New York arranged a
bailout of several billion dollars by 14 investment banks. m

Suggested Reading

Roger Lowenstein, When Genius Failed.
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Questions to Consider

1. Why do the prices of a given stock go down as well as up even when the
company is doing well?

2. The future prices of stocks are uncertain. What option and stock portfolio
could you purchase to guarantee that you will not lose more money than
the price of the option even if the stock price falls dramatically, yet you
still reap the benefits of substantial gains in the price of the stock? This
is an example in which options are used to hedge against stock decline.
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Probability Where We Don’t Expect It

Lecture 8

[Iln today’s lecture we’re going to talk about finding probability in
unexpected places—places where you wouldn’t expect probability to

play a role at all.

ometimes, probability is centrally involved in solving problems that
seem to have no random or probabilistic component to them at all.
In mathematics, an example occurs in some methods of determining
whether a number is prime or not. Any number is either prime or it’s not—
there is no randomness involved—yet probabilistic methods can essentially
determine whether a number is prime even when the number is far too large
for any computer to factor. Randomness and probability are involved in
psychology when talking about conditioned behavior. Pigeons rewarded
randomly rather than on any fixed pattern will retain their training longest.

Strategic decision-making, or game theory,
often finds that optimal strategies involve
taking one action or another with a certain
probability rather than finding one best move.
Optimal business strategies or sports strategies
often are probabilistic rather than deterministic.
Probability pops up in many unlikely places.

In this lecture, we will talk about finding
probability in unexpected places. We start with
the world of math. Probability can be used to
determine to any desired degree of certainty the
primality of a natural number with hundreds

|
Probability can be
used to determine

to any desired
degree of certainty
the primality of a
natural number with
hundreds of digits.

of digits. Whether a positive whole number is prime (that is, whether the
number is not the product of natural numbers smaller than itself) is clearly
not a question with any random or undeterministic feature, yet a method of
determining whether it is prime uses randomness and probability.
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One way to see if a number is prime is to try to divide into it all smaller
numbers. Here is an example of this method of determining that the number
91 is not prime.

Divide 91 by Get remainder of
2 1
3 1
4 3
5 1
6 1
7 0

When we arrive at 7, we see that 91 divided by 7 is 13, with no remainder;
thus, 91 is not prime. This strategy, however, would be impossible to use
for longer numbers, even with today’s computers. The method is effective
even when it might be impossible to determine whether or not the number is
prime in any known deterministic way.

Another strategy for determining if a number is prime uses Fermats little
theorem: Start with a number that is prime, take any number less than that
number and raise it to the power of 1 less than the prime, then divide by the
prime; you get a remainder of 1. This remainder formula is written n »'= 1
mod p. For example, if you start with the prime number 5, then you take any
number less than 5 (for example, 2) and raise it to the fourth power (5 — 1),
you get 16, and 16/5 = 3, with a remainder of 1. Likewise, if you start with
the prime number 5, then you take 3 (instead of 2) and raise it to the fourth
power (5 — 1), you get 81, and 81/5 = 16, with a remainder of 1. If you start
with the prime number 5, then you take 4 (instead of 2) and raise it to the
fourth power, you get 256, and 256/5 = 51, with a remainder of 1.

Let’s take a different prime, 7. If we choose 2 as the smaller number, then

we find 2° is 64, and 64/7 = 9, with a remainder of 1. No matter what smaller
number we choose, we always have a remainder of 1.
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This theorem then gives us a way to see if a number is not prime. For
example, we can prove 9 is not prime:

28=256

256 _ 28, with a remainder of 4

Because the remainder is not 1, 9 is not prime. In addition, there is
a computational simplification using just remainders that speeds up
the calculation. We can also use this theorem to test if a huge number is
not prime.

The question must be asked, though: Even if we use the number 2, how do
we raise it to the required power and find the remainder after dividing? For
large values of p, 27~ mod p can be cleverly computed by simplifying:

2%x2=22

22 x 92 =)4

24 x 94 =98

28 x 28 =016

216 x 216 =232 efc,

If p has 300 digits, it takes only on the order of 1000 such doublings to
calculate 27 - 'mod p. This is a probabilistic test, however, because some
numbers fool it. For example, 341 is a product of 11X31, yet 2**° divided
by 341 does give a remainder of 1. However, for a randomly chosen 13-digit
number, there is a 99.9999985% chance that a number that satisfies this test
is prime. Of the 308,457,624,821 thirteen-digit primes, only 132,640 will
fool this test!

Probability arises in game theory. Game theory is the mathematical model of
strategic decision-making. It is used in economics, business, games, sports,
war, and other areas where strategic decisions must be made. Game theory
uses the concept of a payoff matrix, which describes the payoffs for each
player for each combination of options that the players could choose.
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We will study game theory as it applies to football. In football, on the third
down with many yards to go for a first down, the usual options are a pass
play or a run play. The defending team, then, can defend against the pass
or defend against the run. Below is a possible payoff matrix. Each number
represents expected yards gained by the offense. The defensive payoffs are
understood to be the negative of the numbers:

Defense Options

Defend against pass | Defend against run

Offense | Pass 5 7
Options | Run 6 1

If the offense always passes, the defense will learn to always defend against
the pass. That combination gives an expected value of 5 yards for the offense.
But if the offense always runs, the defense will learn to always defend against
the run. That combination gives 1 for the offense. Game theory confirms that
once in a while, at random, making the unobvious play is the best long-run
strategy. According to our calculations, the expected number of yards gained
if the offense passes with probability p and the defense defends against the
pass is p x 5 + (1 — p) x 6. The expected number of yards gained if the
offense passes with probability p and the defense defends against the run is:
p x 7+ (1—p)x 1. Our probability of passing is a max/min strategy:

pxS5S+(1-p)x6=pxT+(1-p)x1

Our conclusion is that the offense should pass 71% of the time (randomly).
That combination gives an expected value of 5.3 for the offense, which is a
higher value than either of the two pure strategies. Likewise, using the payoff
matrix figures again, we find that the defense should defend against the pass
86% of the time (randomly). This is called a Nash equilibrium, that is, a
strategy whereby no player can get an advantage by unilaterally changing
strategy. It was named for John Nash, who won the Nobel Prize for his work
on game theory.
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Let’s turn now to risk management in business, studying how a large NASA
project estimates its budget. The project lists all the risks that might incur
a cost, with an estimate of both the possible cost and the probability of
occurrence. The expected value is the probability of occurrence times the
cost. As risks are retired or reevaluated or as new risks are added to the list,
the expected value is recomputed. In this way, the project can estimate how
much money it should keep in reserve.

Psychologists have learned that randomness can play a valuable role in
reinforcing a desired behavior. Giving rewards is an ingredient in training
an animal, for instance, a pigeon, to behave in a desired way. The question
is, how frequently should you reward the instances of the desired behavior
in order to have the conditioning last the longest? If you give a reward
for a certain behavior (pecking) every time, at first the pigeon learns but
quits rather soon when the reward ceases to appear. The best strategy is to
randomly reinforce the behavior. Changing the frequency of rewards in an
unpredictable, random way leads to behaviors that are retained for long
periods even in the absence of rewards. Applied to humans, this observation
may help explain the compulsiveness of some gamblers. m

Suggested Reading

Edward B. Burger and Michael Starbird, The Heart of Mathematics: An
invitation to effective thinking, 2™ ed.

Oskar Morgenstern and John von Neumann, Theory of Games and Economic
Behavior (commemorative edition).
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Questions to Consider

1. Here is a payoff matrix in which each player is a driver who can choose
to drive on the right or on the left of the street.

Drive on right

Drive on left

Drive on right 70,70

~100, -100

Drive on left -100, -100

70,70

The value (by some measure) is 70 for each player if the two agree to
drive on the same side of the street, thus avoiding a crash when going in
opposite directions. The value is —100 if they choose different sides and,
thus, crash. What are the Nash equilibriums for this payoff matrix?

2. Can you think of an example in your own life where random
reinforcement has had a lasting impact on your behavior or attitudes?
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Probability Surprises
Lecture 9

No course on probability could possibly be complete without a discussion
of two of the most famous examples of counterintuitive probabilistic
scenarios. The first one we’re going to do is the birthday problem, and
then we’re going to do the Let’s Make a Deal® Monty Hall question.

counterintuitive result; namely, if 50 random people are in a room,

there is a 97% chance that at least two of them have the same
birthday. The analysis of that probability illustrates strategies of combining
probabilities. This counterintuitive result can be confirmed by looking at
various groups of people, such as presidents of the United States or Oscar
winners, and finding birthday coincidences as predicted. The Monty Hall
problem is equally baffling to most of us. It is a challenge for all of us to
hone our sense of probability so that our intuition more closely accords with
reality. Tricky probability problems arise in issues from birthdays to game
shows to tennis to choosing socks from a drawer!

Probability is full of surprises. The birthday problem is a famously

Let’s start this lecture with the famous birthday problem, mandatory for any
probability course. If 50 random people are in a room, what is the probability
that two of them will have the same birthday? In fact, the surprising answer
is that there is a 97% chance that two of them will have the same birthday. It
is easier to compute the probability that all 50 birthdays are different.

To compute the probability that all the people have different birthdays, you
would multiply as follows:

365 364 363 319 318 317
—x—Xx—— ... —x—x——=0.03
366 366 366 366 366 366

The product of all the fractions is about 0.03. Thus, the probability that no
two people have the same birthday is only about 3%. Hence, the chance that
at least two people do have the same birthday is about 97%.
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The surprisingly high probability for birthday coincidences can be
tested in reality by looking at some collections of about 50 people. Of
the first 42 different presidents, one pair has the same birthday: Polk and
Harding: November 2 (1795, 1865). One pair and one triple of presidents
have the same death day: Fillmore and Taft: March 8 (1874, 1930);
J. Adams, Jefferson, Monroe: July 4 (1826, 1826, 1831). Of the first 46
vice presidents, three share a birthday: Hannibal Hamlin: August 27, 1809;
Charles G. Dawes: August 27, 1865; and Lyndon B. Johnson: August 27,
1908. Of the Oscar winners for best actor, two have the same birthday: Ben
Kingsley, who won in 1983: December 31, 1943; and Anthony Hopkins,
who won in 1992: December 31, 1937. Two winners have the same death
day: Humphrey Bogart, who won in 1952: January 14, 1957; and Peter
Finch, who won posthumously in 1977: January 14, 1977. If you have 90
random people in a room, chances are .999993
I that at least two will have the same birthday.
If you have 90 And if you have only 23 people in the room, the
random people in chances are even that at least two will have the
a room, chances same birthday.
are .999993 that at Another famously non-intuitive problem is the
least two will have Monty Hall problem from the TV show Let’s
the same birthday. Make a Deal®. Here is how it works: A contestant
EEE————— in a game show gets to pick one of three doors
and keep whatever prize is behind the door. One
of the doors has a desirable prize; the two others don’t. At this stage, no
matter what door the contestant chooses, the probability is 1/3 that she will
pick the door with the desirable prize. Having announced her choice, but
before the door is opened to disclose the prize, Monty Hall, the host of the
game show, opens one of the two doors she did not choose, revealing an
undesirable prize, and offers her the chance to change her choice. Should
she change? Yes, she should change: The probability that her original choice
is the desirable prize is only 1/3, while the probability is 2/3 that the other
unopened door has the good prize. The validity of the above answer assumes
that the host knows which door conceals the desirable prize and never
opens it.
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Here is a variation on the Monty Hall problem. If there are 1,000,000 doors,
the contestant’s initial guess has a 1/1,000,000 chance of being right and
a 999,999/1,000,000 chance of being wrong. Let’s say Monty Hall opens
999,998 other doors and leaves one closed besides the one the contestant
selected. The probability is 999,999/1,000,000 that the prize is behind the
other remaining closed door, so the contestant should definitely switch. And
here is another variation of the Monty Hall problem: Let’s say there are five
doors; the contestant’s initial guess has a 4/5 chance of being wrong. Suppose
Monty Hall then opens two of the losing doors and offers the contestant the
chance to pick one of the other two remaining closed doors. The probability
is 4/5 that the prize is behind one of the two closed doors other than the door
originally selected. Switching to one of the other doors gives the contestant
a 2/5 chance of winning, while sticking with the original choice gives her a
1/5 chance.

Our next example is a problem from tennis: If the score in a tennis game
gets to deuce, what is the probability of the server winning the game? Deuce
occurs when the game is tied and one player has to get ahead by two points to
win. It appears that this is an infinite problem because there is no theoretical
limit to the number of deuces in a game. In fact, this problem can be resolved
by a clever strategy. Suppose the server has a 0.6 probability of winning each
point and the receiver, a probability of 0.4 of winning. The probability of
the server winning the next two points is 0.6 x 0.6 = 0.36. The probability
of returning to deuce is 0.6 x 0.4 + 0.4 x 0.6 = 0.48. Let p be the probability
that the server eventually wins. Either the server could win in two points
(0.36) or the game could return to deuce (0.48), followed by the server’s
eventually winning. We get the following equation: p = 0.36 + 0.48p. Solving
the equation, we see that the server will win with a 0.69 probability.

Here is a final problem to ponder: Suppose you have three sock drawers. In
one drawer, you have two blue socks. In a second drawer, you have two red
socks. In a third drawer, you have one red and one blue sock. You randomly
choose a drawer, reach in, and pick out a sock without looking. You see it
is red. What is the probability that the other sock in the drawer is also red?
Answer: You are equally likely to have chosen any one of the three red socks.
For two of them, the other sock is red; for the third, the other sock is blue.
Thus, the probability of the other sock being red is 2/3. m
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Suggested Reading

Edward B. Burger and Michael Starbird, Coincidences, Chaos, and All That
Math Jazz: Making Light of Weighty Ideas.

, The Heart of Mathematics: An invitation to effective thinking,
2nd ed.

Questions to Consider

1. Suppose I am in a room with 49 other people. What is the probability
that someone in the room has the same birthday as I do? Hint: This
question requires a different calculation from the one presented in the
lecture. To see why, suppose that my birthday is, for example, July 10.

g

Suppose in the Let’s Make a Deal® show that Monty Hall did not know
the location of the big prize, and he sometimes would open the big prize
door by accident. Now analyze the situation in which the contestant
selects a door, Monty Hall opens another door, and it happens to reveal a
worthless prize. Is the contestant better off switching, or in this case, are
the probabilities for switching and sticking the same?
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Conundrums of Conditional Probability
Lecture 10

In this lecture we’re going to introduce a very basic concept of
probability that’s associated with what happens when we’re asked
a probabilistic question, but then we’re given more information. It
changes the probability because we put ourselves in a more restricted
arena of possibilities.

n important concept used to help us find our way through probabilistic

complexity is the idea of conditional probability. Conditional

probability refers to a situation in which we begin with a clear
probabilistic scenario but are then told more information. The additional
information alters the probabilities, but frequently, the change is challenging
to analyze. Principles of dealing correctly with conditional probability can
guide us to correct answers, but these are tricky and highly non-intuitive
issues. The famous Bayes’theorem describes the relationships among related
conditional probabilities. The ideas of conditional probability are introduced
via some probabilistic conundrums that delightfully puzzle us.

To introduce conditional probability, we will consider a collection of 27 cards
that have been chosen to illustrate the idea. There are 21 black cards, of which
9 are face cards, and 6 red cards, of which 3 are face cards. We can answer
questions about the probability of choosing a certain type of card from this
group of cards. What is the probability of choosing a face card? Because we
have 12 face cards, the answer is 12/27. What is the probability of choosing
a red card? Because we have 6 red cards, the answer is 6/27. Conditional
probability enters the picture when we are told one of the characteristics that
cuts down the population. For example, what is the probability of getting a
red card given that we have chosen a face card? There are 3 red cards out of
the total 12 face cards; thus, the conditional probability of choosing a red
card given that we have chosen a face card is 3/12.

Let’s look at another question that relates two different conditional
probabilities. What is the probability of getting a face card that is red? This

question involves two probabilities: the probability of choosing a face card
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and the conditional probability of choosing a red card given that we have
a face card. The answer is the product of two probabilities: the probability
of choosing a face card from among 27 cards 12/27 times the conditional
probability of choosing a red card given that we have a face card 3/12, or
(12/27) x (3/12) = 1/9. We can look at the same situation backward. What is
the probability of getting a red card that is a face card? The analysis is the
same: the probability of choosing a red card from among 27 cards 6/27 times
the conditional probability of choosing a face card given that we have a red
card 3/6, or (6/27) x (3/6) = 1/9.

Bayes’ theorem is a principal tool that is used to deal with conditional
probability. Suppose 4 represents one characteristic (such as “red card”) and
B represents another characteristic (such as “face card”). Bayes’ theorem
relates two conditional probabilities, the probability of 4 given B and the
probability of B given A. It can be presented in two ways:

P[B] x P[A|B] = P[A] x P[B|A] or P[A|B] = (P[B|A]P[A])/P[B]

Conditional probability can surprise us. Consider the following scenario:
Suppose you meet a man and learn that he has exactly two children. Suppose
that you learn that his older child is a boy. Therefore, we know that two of
four possibilities are eliminated (two girls [GG] or an older girl and a younger
boy [GB]), leaving the possibility that he has two boys (BB) or an older boy
and a younger girl (BG). Of the remaining two equally likely possibilities,
one is boy-boy. Thus, the probability that both children are boys given that
the older child is a boy is 1/2.

This is called conditional probability. But suppose you ask the man
instead, “Do you have a son?” and he answers, “Yes.” The GG possibility
is eliminated, and three possibilities remain, GB, BG, and BB. Thus,
the probability that both of his children are boys given the knowledge
(or “condition”) that at least one is a boy is 1/3. Notice that the answer is
not 1/2. The information that at least one child is a boy affects the probability
differently than the information that the older child is a boy. Suppose you had
asked the following question of the man instead: “Do you have a son who was
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born on a Tuesday?” and he answers, “Yes.” Most people’s intuition is that
this birthday information is irrelevant and should yield the same probability
as the previous version of the problem. To do this calculation, we begin by
writing down all the possible day-of-the week and gender combinations, and
we find that there are 196 in all. We then narrow down the possibilities by
focusing on the pairs for which at least one child is a boy born on a Tuesday.
We find we have 13 BB possibilities, 7 BG possibilities, 7 GB possibilities,
and of course, no GG possibilities, for a total of 27. The probability that both
children are boys given that at least one is a boy
born on a Tuesday is 13/27, which is between
1/3 and 1/2. As our knowledge
and information
Let’s look at another problem: Suppose we have  apout possibilities
two urns, each containing 10 balls. In one urn,
we have 7 blue and 3 red balls, and in the other,
we have 3 blue and 7 red balls. We can’t tell ~ €hange, the
which urn is which. T select an urn at random  probabilities of
and draw a red ball from it; then I put the ball events change.
back in the urn and choose a ball again from the  E—
same urn, and it is red. I choose a third time and
get a red ball and a fourth time and get a red ball. What is the probability
that the urn I chose was the one with 7 red and 3 blue balls? One strategy
might be to imagine having 20,000 people performing the same experiment,
randomly choosing one of the two urns and randomly drawing out 1 of the
10 balls four different times. Logically, about half the people (10,000) would
choose the blue-heavy urn and half, the red-heavy urn.

in a situation

Out of the 10,000 people who chose the red-heavy urn, how many would we
expect to choose red balls four times in a row? Each of the four times one
of the people reaches into the red-heavy urn, he or she has a 70% chance of
getting a red ball. Therefore, we arrive at this equation: 0.7 X 0.7 x 0.7 x 0.7
= 0.2401, or 2401 of the 10,000 people. However, for the blue-heavy urn,
people have only a 30% chance of getting a red ball each of the four times a
ball is chosen. The equation is: 0.3 x 0.3 x 0.3 x 0.3 = 0.0081, or 81 of the
10,000 people. We know, then, that 2482 people would draw four red balls.
Therefore, the probability that the person choosing four reds is drawing from
the red-heavy urn is 2401/2482, or 97%.
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Let’s change the scenario a little and draw a ball out of an urn 50 times
instead of 4 times. Let’s say we find that 27 times, we choose a red ball, and
23 times, we choose blue. What is the probability that we are choosing from
the red-heavy urn? Surprisingly, our calculations show us that the probability
is again 97%! m

Suggested Reading

Edward B. Burger and Michael Starbird, The Heart of Mathematics: An
invitation to effective thinking, 2™ ed.

Peter G. Moore, The Business of Risk.

Jeffrey S. Rosenthal, Struck by Lightning: The Curious World
of Probabilities.

Questions to Consider

1. Someone tells you the following: “I met a man who told me that he has
exactly two children. I asked him one question, but I can’t remember
what question I asked. It was either ‘Is your older child a boy?’ or ‘Is
your younger child a boy?’ I remember that he answered yes.” What is
the probability that both of the man’s children are boys?

L

Suppose you have two urns, one of which contains 10 red balls and the
other, 5 red balls and 5 blue balls. You select an urn at random and draw
a red ball from it; then you put the ball back in the urn and choose a ball
again from the same urn, and it is red. You choose a third time and get a
red ball and a fourth time and get a red ball. What is the probability that
you are reaching into the red urn?
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Believe It or Not—Bayesian Probability
Lecture 11

[T]his basic view of probability is called the frequentist probability,
because it’s talking about the frequency with which a repeated event
happens. But there’s another sense in which we often think in terms of
probability that measures really a quite different kind of phenomenon,
and so we sometimes wish to use probability to express in some sort of a
quantitative way the degree to which we believe something.

hat does probability mean in the real world? Probabilists do not
agree. Mostly in these lectures, we’ve focused on the frequentist
view of probability; namely, that if we repeat an experiment in
question many times, the percentage of successful outcomes is the probability.
However, another view of probability is that it measures a person’s belief
in the likelihood of the item in question. “Did Shakespeare write Hamlet?”
We can’t do a repeatable experiment pertinent to this question. A frequentist
holds the view that probability applies only to experiments whose outcomes
are random and, therefore, would not discuss the Hamlet question as one
susceptible to probabilistic comment. Bayesian probability concerns
itself with describing a weighted assessment of
possibilities, then develops a method for revising — E———————
that assessment as more evidence is amassed. = Another use
The different views of probability are intriguing of probability
to consider, and in some cases, adopting one

philosophy or another has practical implications. Is to express

quantitatively our

In most of the examples in earlier lectures,  degree of belief in
probability could be interpreted as the fraction  gome statement.
of successes in a series of identical experiments E ——————
or trials. An example would be saying that the

probability of rolling a die and coming up with a four is 1/6. That is, if you
rolled the die many times, about 1/6 of those times would show four. This
view of probability is called frequentist probability.
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Another use of probability is to express quantitatively our degree of belief
in some statement. For example, if I say that the probability is 98% that
Shakespeare wrote Hamlet, you’ll know that I believe very strongly that
Shakespeare was the one who indeed wrote Hamlet, but that there is some
small possibility that someone else was the actual author of the play. Saying
that we believe there is 98% probability that Shakespeare wrote Hamlet
makes a statement about the strength in our belief. But this does not mean
that if 100 Shakespeares were born, 98 of them would have written Hamlet.
We have two kinds of situations in which we use the same word—probability.
As a measure of the strength of belief, probability expresses our uncertainty,
but the two kinds of probability are different kinds of things.

When probability is used to express quantitatively a degree of belief, it must
be clear what all the possibilities are. Among the various potential states
of the world, we express the relative probabilities of those different states
being the correct one. And we assign to each such possible state of the world
a probability that that one is the correct one The sum of the probabilities
is 100%.

To ground our discussion, let’s take an example of fish in a stream. We’re
interested in what fraction of fish in the stream are trout, from the possibilities
of 5%, 15%, 25%, ..., 95%. Before any data are collected, we assume
that we have no bias; we establish the 10 possibilities and give each the
same probability.

gﬁgﬁt&eiﬁé ;l;l:ggfgintt;glft Probability of this hypothesis
5% 0.10
15% 0.10
25% 0.10
35% 0.10
45% 0.10
55% 0.10

51



Lecture 11: Believe It or Not—Bayesian Probability

Hypothesis: This percentage
of fish in the stream are trout

Probability of this hypothesis

65% 0.10
75% 0.10
85% 0.10
95% 0.10

Suppose we catch three fish—trout/trout/non-trout. We would naturally
believe that it is more likely that the percentage of trout is high. We can
update our probabilities for the various potential percentages of trout in a
stream by doing a thought experiment in which we imagine 10,000,000
fishermen—1,000,000 fishing in each of 10 different universes (one for each
hypothesis). We can calculate how many of those fishermen would catch a
trout/trout/non-trout combination in their respective streams. The following

table shows our calculations:

Hypothesis: If this
percentage of fish in the
stream are trout

Then of 1,000,000 fishermen,
this many catch two trout
and one non-trout

5% 2375
15% 19,125
25% 46,875
35% 79,625
45% 111,375
55% 136,125
65% 147,875
75% 140,625
85% 108,375
95% 45,125
Total 837,500 in all streams
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We can now update our belief system. Our a priori assumption, before
catching any fish, was that each hypothesis is equally likely. Then, we caught
two trout, then one non-trout. We can now recalculate the probability that
the stream contains 5% trout by dividing 2375 by 837,500. Likewise, we
can recalculate the probability that it is a 15% stream by dividing 19,125 by
837,500, and so forth.

By applying Bayes’ theorem to make an update to our previous resulting
distribution, we get a new distribution that has most of the probability
concentrated in the choices 35%, 45%, 55%, 65%, and 75%. If we catch
another trout and another non-trout, we can perform the same type of
calculations using our new, updated distribution. Now we have evidence
that changes our sense of the possibility; we have, for example, many more
fishermen in the 65% stream than in the 5% stream. As we catch more fish,
the evidence will dominate over our initial estimate, thus reflecting the Law
of Large Numbers. After catching 100 fish, we have a very strong belief that
we have a 65% stream, but about a 10% chance that it is a 55% stream or a
10% chance that it is a 75% stream.

Thus, we have two views of probability. The frequentist probability is the
view in which probability is defined in terms of long-run frequency or
proportion in outcomes of repeated experiments. Bayesian probability is the
view in which probability is interpreted as a measure of degree of belief. In
this view, the concept of probability distribution is applied to a feature of a
population to indicate one’s belief about possible values of that feature.

Let’s look at another example of updating our probability distribution in the
field of medicine. A doctor narrows a patient’s illness to three possibilities:
A, B, or C. After assessing the patient, the doctor assigns probabilities of
the patient having the diseases as follows: A: 50%, B: 40%, C: 10%. After
a more thorough exam, a symptom, S, is discovered, and the doctor knows
what the probability is of a patient with each of the diseases exhibiting
this symptom.
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Therefore, we update our initial probability distribution:

.. - Updated
Hyp.othes1s. Probab'lllty 1\‘Iumb.er of Probability Num})er probability
Patient has of this imagined . of patients .
this disease | hypothesis patients’ of showing § showing S’ of this

hypothesis
500/2500
0, 0,
A 50% 5000 10% 500 —20%
1200/2500
0, 0,
B 40% 4000 30% 1200 — 48%
800/2500
0, 0,
C 10% 1000 80% 800 — 329,
'Out of 10,000

“Note that the total is 2500.

We see that B is now the most probable disease, replacing disease A. m

Suggested Reading

Donald A. Berry, Statistics: A Bayesian Perspective.
E. T. Jaynes, Probability Theory: The Logic of Science.

Questions to Consider

1. Bayesian probability involves having an a priori distribution and
updating it in light of evidence. What is the influence of different a priori
beliefs after a great deal of evidence is accumulated? Why?

g

Suppose your a priori belief about a coin is that you are 100% certain
that it will always land heads. You flip the coin and it lands tails. Then
you cannot update your probability distribution because you ascribed 0
to the probability of ever getting a tail. What went wrong?



Probability Everywhere
Lecture 12
D

In this lecture we’re going to follow a road that often leads to interesting
ideas, and that is the road of trying to understand what appears to be
a paradoxical kind of situation; and then in thinking it through, we
develop an idea.

ne of the strengths of mathematics is its strategy of generalizing

and abstracting ideas. In the case of probability, we have mostly

considered situations for which a finite number of possible outcomes
was possible for a given situation; then, we investigated issues of probability
associated with that situation. The techniques we developed can be extended
to situations in which infinitely many outcomes are imagined as possible.
The two envelopes problem and the St. Petersburg paradox each force us
to confront new challenges that arise when infinitely many outcomes
are possible.

Probability is a fascinating study that has many real-world applications. It
presents us with a rich field of intriguing inquiry that contains questions
and insights that are mathematical, practical, and philosophical. Often,
mathematical ideas are born by trying to tackle a specific problem. In thinking
through how to deal with the specific problem, new ideas are created.

Here is a conundrum known as the two envelopes problem: You are given
two envelopes and told that each envelope contains a check for a certain
amount of money, and one of the checks is for exactly twice as much money
as the other. You randomly select one of the envelopes and open it. The
enclosed check is for a certain amount of money, say d dollars. Now you can
either keep that money, or you can take the contents of the other envelope.
You know that you are as likely to have chosen the lesser amount as you are
likely to have chosen the greater amount. But now you do an expected-value
analysis and find a paradoxical situation.
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There is a 0.5 probability that you have the higher amount and a 0.5
probability that you have the lower amount; thus, the expected value of
switching is:

Loy dd g d 3,
2 22 4 4

The result is greater than d, so this analysis seems to suggest that you should
switch. But this makes no sense, because it is clearly as likely that you have
the lower amount as the greater amount. What is wrong? The two envelopes
problem brings up a situation we have not dealt with much, namely, one in
which the experiment has infinitely many possible outcomes. How can we
revise our thinking to cope with infinitely many alternatives?

If any amount of money is possible, then there are infinitely many possibilities
theoretically. But in reality, huge numbers are not possible. Actually, we
have an a priori sense—an expectation—of a probability distribution. We
can hearken back to the Bayesian strategy and realize that we have an a
priori sense of the probabilities of various amounts. Depending on our a
priori beliefs, we are forced to confront reality and realize that we don’t
have an infinite number of possible amounts of money in the envelopes.
We can describe the probabilities by a graph based on the expected-value
analysis using the probabilities according to our a priori distribution. The
expected-value analysis using the probability distribution that takes into
account the infinite number of possible outcomes will give us good guidance
about whether to switch envelopes. In addition, we must point out that even
when dealing with an infinite number of possible outcomes, we must assign
probabilities that total 1.

Another famous paradox involved with gambling is the St. Petersburg
paradox. Suppose a gambler plays a coin-flipping game, winning $2 for
flipping heads. If the gambler flips tails, then heads, he wins $4. If the
gambler flips two tails in a row, then heads, he wins $8. If the gambler is
very lucky, he might flip five tails in a row, followed by heads, to win $64.
How much would you pay to play this game?
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We can calculate the expected value:

LWL WILY SIS P PR T S P
2774778 e

The expected payout is infinity, so it appears you should pay any amount of
money to play this game. The paradox is that you would not make a great
deal of money in this game. Simulations show that average payoffs are
quite low.

Probability predictions are the basis of statistical inference. Statistical
inferences boil down to comparing expectations from probability with
collected data. If your expectation from probabilistic analysis differs greatly
from what you see in the data, you can make the deduction that the concept
you had about how the data were being produced must be wrong. Statistics
is an important application of probability and is covered in The Teaching
Company course Meaning from Data: Statistics Made Clear.

Probability is a fascinating field that plays a fundamental role in how we
understand our world, from games to science to finance. One recurring
theme of the course was that randomness and probability often confront us
with situations that are counterintuitive. Probability offers intriguing and
sometimes subtle puzzles, such as the birthday problem, the Monty Hall
Let’s Make a Deal® puzzle, and the two-boys puzzle. All these examples
seem wrong, but when our intuition and reality are not in accord, one of
them has to give, and it has to be our intuition. After we have adjusted our
understanding to see the truth of these counterintuitive examples, then the
probability results are ones that we can make reliable decisions on.

Probability gives us a logically sound way of quantifying uncertainty. Many
of the ideas about probability in this course were illustrated in the realm of
gambling, because gambling games are fundamentally based on probability.
Casinos count on probability to ensure their success. Casinos are the modern
world’s testament to the Law of Large Numbers. Random behavior that
results in regularity in the aggregate is a central feature of our serious,
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scientific understanding and descriptions of nature. The directions and
speeds of molecules are far too numerous to count and describe. Instead, we
describe the interactions as the result of a probabilistic description of random
motion, with appropriate constraints that describe the molecular behavior.

The role of randomness is central to the science of genetics because the whole
premise of the subject is that parts of the genetic material from each parent
are randomly donated to the offspring. Of course, probability plays a central
role in descriptions of our financial world
and investments. Investments are viewed
as having a probability of rising or falling. Often, mathematical
Devising an optimal portfolio involves ideas are born by

optimizing the probability of success. trying to tackle a

specific problem.
In thinking through

One of the fundamental sources of our
uncertainty about the world is that often, we
don’t know what is really true among several ~ how to deal with the
possibilities. When we sit on a jury, we may  specific problem, new
noF know whether the accused is innocent or ideas are created.
guilty. Instead, we have a sense that there IS E  —— ——————
some likelihood of guilt and some likelihood

of innocence. As evidence is adduced at the trial, our relative confidence in
guilt or innocence shifts. The strategy of Bayesian probability describes the
relative strengths of our beliefs and how they are altered by evidence.

Randomness and uncertainty are fundamental parts of reality. Probability
describes what we should expect from randomness. Probability is a basic
tool for making sense of and coping with the reality of randomness and
uncertainty in our world. m
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Suggested Reading

Ivars Peterson, The Jungles of Randomness: A Mathematical Safari.

Sheldon Ross, A First Course in Probability.

Questions to Consider

1. Suppose in the St. Petersburg game, the rule was changed so that you
received $64 as soon as you flipped five tails in a row and the game then
ended. How much should you pay to make it a fair game? Would you
play such a game?

g

Some people believe that everything that happens in life happens for a
reason. To what extent do you believe that the occurrences of everyday
life are random?



Timeline

Timeline

60

Girolamo Cardan writes (but doesn’t
publish) Liber de Ludo Aleae, a book
on games of chance. He was the first to
venture into studying probability.

Blaise Pascal and Pierre de Fermat,
through a series of five letters, discuss
probabilistic solutions to a number of
mathematical questions raised in the
analysis of dice games.

Christiaan Huygens publishes De
Ratiociniis in Ludo Aleae, on the
calculus of probabilities, the first printed
work on the subject.

Jacob Bernoulli publishes the concept
of the Law of Large Numbers, a
mathematical statement of the fact that
when an experiment is repeated a large
number of times, the relative frequency
with which an event occurs will equal
the probability of the event.

Nicholas Bernoulli edits and

publishes Ars Conjectandi (The Art of
Conjecture), written by his uncle, Jacob
Bernoulli, in which the work of others
in the field of probability is reviewed
and thoughts on what probability really
is are presented.



Sir Isaac Newton publishes The
Chronology of Ancient Kingdoms
Amended, in which he gives a 65%
confidence interval for the length of a
king’s reign.

Abraham de Moivre publishes an
account of the normal approximation
for the binomial distribution for a

large number of trials. This improves
upon Jacob Bernoulli’s Law of Large
Numbers. This account will be included
in the 1756 edition of De Moivre’s

The Doctrine of Chances, a treatise on
probability first published in 1718.

Daniel Bernoulli publishes Exposition
of a New Theory on the Measurement of
Risk, an early look at probability theory
and economic decision making.

Pierre-Simon Marquis de Laplace
publishes a seminal work on probability.

Robert Brown, a botanist, while
observing the motion of pollen grains,
hypothesizes underlying mechanics

for erratic movements. This later led
Bachelier and Einstein to study and
make rigorous Brown’s work. The
mechanics are now known as Brownian
motion in his honor.

Simeon Denis Poisson publishes
Recherches sur la probabilité des
Jjugements en matiere criminelle et
matiere civile, which introduces the
expression Law of Large Numbers
and in which the Poisson distribution
first appears.
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Timeline

62

Augustin-Louis Cauchy presents

an outline of the first rigorous proof
of the central limit theorem, which
is a generalization of the Law of
Large Numbers.

Pafnutii Lvovich Chebyshev
publishes a paper, On Mean Values,
which uses Irenée-Jules Bienaymé’s
inequality to give a generalized Law
of Large Numbers.

Pafnutii Lvovich Chebyshev
publishes On Two Theorems,

which gives the basis for applying
the theory of probability to statistical
data, generalizing the central limit
theorem of de Moivre and Laplace.

Louis Bachelier publishes the first
mathematical approach to Brownian
motion in his Ph.D. thesis, Théorie
de la Spéculation.

Einstein publishes three groundbreaking
scientific papers. The third and least
famous of the three (the first won the
Nobel Prize for Physics and the second
was on special relativity) detailed a
mathematical treatment of

Brownian motion.

Paul Levy delivers three lectures at
the Ecole Polytechnique, highlighting
entirely new areas of research in
probability theory.

Kolmogorov publishes the influential
Analytic Methods in Probability Theory.



Kiyosi Ito publishes On Stochastic
Processes (Infinitely Divisible Laws of
Probability), a groundbreaking paper.

Von Neumann and Morgenstern publish
Theory of Games and Economic
Behavior, the first text on the new field
of game theory.

William Feller writes the first volume of
his famous Introduction to Probability
Theory and Applications.

Joseph Leo Doob publishes Stochastic
Processes, a now classic text on
stochastic (probabilistic) analysis and
martingale theory.

Norbert Wiener publishes Nonlinear
Problems in Random Theory.

MIT mathematician Ed Thorp publishes
Beat the Dealer, a popular work on
applying probabilistic thinking in the
game of blackjack in Las Vegas casinos.

Fischer Black and Myron Scholes
write their seminal paper on a
mathematical and probabilistic
approach to pricing options.

Robert C. Merton publishes Theory of
Rational Option Pricing.

Long-Term Capital Management
experiences its strong profitable run,
then collapses.

Robert Merton and Myron Scholes,
applied mathematicians, win the Nobel
Prize for Economics for their work in
options-pricing theory.
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Glossary

Bayes’ theorem: A mathematical equation relating two conditional
probabilities: P[A4|B] = (P[B|A]P[A])/P[B].

Bayesian probability: The view in which probability is interpreted
as a measure of degree of belief. In this view, the concept of probability
distribution is applied to a feature of a population to indicate one’s
belief about possible values of that feature. The principal result of
experiments or more evidence is to update such a probability distribution,
indicating a change in belief. The Bayesian viewpoint is in contrast to the
frequentist view.

Bell’s theorem: A theorem asserting that a particular inequality of certain
probabilities would be true if intuitive concepts of local realism were true
of particle physics. The theory of quantum physics violates the inequality.
Quantum theory implies that when one particle of an entangled pair of
particles is observed, the other particle in the pair, which could be distant,
instantaneously undergoes a state change. Bell’s theorem implies that this
aspect of quantum theory cannot be explained by hidden local variables.

chance: An informal term that tries to capture the same notion as the
term probability.

complementary event: The event complementary to a given event is the set
of all possible outcomes that are not in (or do not satisfy or do not represent)
the given event. For example, in rolling two dice, one event is: “The sum of
the dice is 8.” Its complementary event is: “The sum of the dice is not 8.”

conditional probability: The probability of an event under the assumption
of the existence (or happening or satisfaction) of another event. For example,
in rolling a blue fair die and a red fair die, the conditional probability of the
event “the sum of the dice is 8,” given the event “the blue die is 3 or 6,” is
2/12 = 1/6, because there are 12 possible outcomes with the blue die being
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3 or 6, and two of those (blue 3 and red 5; blue 6 and red 2) sum to 8. We
would say, “The probability of the sum being 8 given that the blue die is 3
or61is 1/6.”

deterministic model: A mathematical description of a phenomenon or
mechanism that does not depend on randomness. Every time the model is
executed with the same initial conditions, the result (prediction) will be the
same. Contrast with probabilistic model.

disjoint events: Two (or more) events that cannot both happen (for one
experiment). Each possible outcome of the experiment is in (or satisfies or
represents), at most, one of the events. For example, in rolling two dice, the
event “the sum is 8” is disjoint from the event “there isa 1.”

event: A set of possible outcomes of an experiment, trial, or observation.
For example, for the trial of rolling a blue die and a red die, a possible event
is: “The sum of the dice is 8.” This event consists of the following five
outcomes: blue 2 and red 6, blue 3 and red 5, blue 4 and red 4, blue 5 and red
3, blue 6 and red 2. Compare to outcome.

expected value: Assuming a numerical value is associated with each possible
outcome of an experiment (or a trial or an observation), the expected value
of the experiment is the weighted average of the values, where each weight
is the probability of the associated outcome. The expected value is a number
that summarizes the possible values. The term can be misleading, because
often the expected value as a number is not associated with any possible
outcome. For example, in the experiment of flipping a fair coin, if the value
2 is associated with heads and the value 5 with tails, then the expected value
is 3.5 (which is neither 2 nor 5 and, hence, hardly to be “expected”). More
formally, it is the expected value of a random variable that is defined, rather
than the expected value of an experiment.

fair: When used in such phrases as “a fair coin” or “a fair die,” this term

indicates the ideal situation in which the probability of any of the possible
outcomes is the same.
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flush: In poker, a hand of five cards in which all the cards are of the same
suit but cannot be placed in sequential order. See straight for examples of
cards in sequential order. Compare to straight flush.

frequentist probability: The view in which probability is defined in terms
of long-run frequency or proportion in outcomes of repeated experiments.
This concept of probability is applied to outcomes of actual or hypothetical
experiments that have an element of randomness. But in the frequentist view,
probability is not used as a measure of knowledge or belief of the possible
values of a quantity that does not have a random element. The frequentist
viewpoint is in contrast to the Bayesian view.

independent events: Two events are independent if one event’s occurring
does not affect the probability that the other occurs. If A and B are
independent events, then P(AB)= P(A)P(B); that is, the probability that
both A and B occur is the product of the probabilities that each occurs. For
example, in flipping two coins, assuming that the results of one flip don’t
affect the results of the other, then the probability of both coins landing on
heads is the product of the probability that the first coin lands on heads times
the probability that the second coin lands on heads.

Law of Large Numbers: The theorem that the ratio of successes to trials in
a random process will converge to the probability of success as increasingly
many trials are undertaken.

mutation: A change in a gene of an organism. Some mutations are inherited
by offspring of the organism that suffered the mutation. Mutations are often
modeled as occurring randomly. Probabilistic models make assumptions
on the rate of mutations that are passed to offspring. From these models,
conclusions are drawn about the evolutionary history of species.

odds: An alternative way of expressing the probability of an event by stating
the ratio: the probability that the event happens divided by the probability
that the event does not happen. For example, if the probability of an event
is 20%, the odds are 20/80, or 1/4. This is sometimes stated, “four to
one against.”
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option: In the financial markets, a contract giving the holder the right to buy
a prescribed asset (such as a certain number of shares of a specific stock) at a
prescribed time in the future for a prescribed amount of money, or a contract
giving the holder the right to sell a prescribed asset at a prescribed time in
the future for a prescribed amount of money, or other related contracts.

outcome: A possible specific result of an experiment, trial, or observation.
For example, for the trial of rolling a blue die and a red die, one possible
outcome is blue 3 and red 5. Compare to event.

permutation: An ordering of distinct objects. For example, there are 24
permutations of the four cards ace of spades, king of diamonds, queen of
diamonds, and eight of hearts because there are 24 different ways to order
those four cards.

poker: A card game (with several variations) played with an ordinary deck
of 52 cards, in which five-card sets are compared to see which is “better.”
The ordering is based on the probabilities of various possible features of a
five-card set; rarer features win.

prime number: A whole number (an integer) bigger than 1 that is not evenly
divisible by any positive whole number except itself and 1.

probabilistic model: A mathematical description, with random aspects, of
a phenomenon or mechanism. The model could consist of mathematical
formulas that refer to random numbers. Thus, one execution of the model
will generally give different results than another execution. Contrast with
deterministic model.

probability: As the term is used in mathematics, a number between 0 and
1 (or 0% and 100%) applied to a possible future event that quantifies the
likelihood of the event’s occurring, or that number applied to a statement
that quantifies our degree of belief in the truth of the statement.

probability distribution: A discrete probability distribution is a table,
function, or graph that assigns a probability to each possible outcome. For

the continuous case, in which any real value is a possible outcome, the
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probability distribution can be viewed as a graphed curve that has an area
of 1 under the curve and above the horizontal x axis. The probability of an
outcome being between value @ and b is equal to the area under the part of
the curve between x = @ and x = b.

random variable: The assignment of a number to each possible outcome
of an experiment. The term random variable is an unusually poorly chosen
term, because it denotes something that is neither random nor a variable. We
avoided using this term in this course.

random walk: A sequence of positions of an object that takes one step each
second (or other unit of time), in which the direction of each step is random.
The direction of each step is randomly chosen independent of any other step.
An example of a one-dimensional random walk is formed by flipping a coin
to determine whether the next step should be forward or backward.

randomness: The aspect of life, or a system, or a pattern, or a mathematical
model that is unpredictable even in theory or unpredictable because of lack
of detailed knowledge. Randomness in a system implies that the behavior
of the system can be different even if the system is subjected to identical
circumstances. Although random occurrences are not predictable, they
exhibit regularity in the aggregate after many repetitions.

roulette: A gambling game in which a small ball settles into one of 38 slots
in a wheel as the wheel is spun and slows. The slots are numbered 0, 00, 1,
2, ..., 36. Presumably, each slot is equally likely on any given spin of the
wheel to be the stopping point for the ball. Note: European roulette wheels
have only 37 slots (no 00).

stochastic model: Synonym for probabilistic model.
straight: In poker, a hand of five cards that can be put in sequential order,
with not all five cards being of the same suit. Examples include ace, 2, 3,

4, 5; 9, 10, jack, queen, king; and 10, jack, queen, king, ace; but not jack,
queen, king, ace, 2. Compare to straight flush.
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straight flush: In poker, a hand of five cards that can be put in sequential
order and in which all five cards are of the same suit. See straight for
examples of sequential order.

uniform distribution: A probability distribution in which every possible
value is equally likely.

weighted average: Given a set of numbers {a,b,c,d,...} (thought of as
values of some quantity) and a weight for each number (w,, w,,w,,w;,...),
the weighted average is the value aw, +bw;, +cw, +dw, +.... The weights
must add up to 1 and must be non-negative.
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Biographical Notes

Bayes, Thomas (1701-1761). British nonconformist minister. Little is
known about Bayes’s life, save that he was educated at Edinburgh University
and was a member of the Royal Society. His major contribution to the field
of probability was the work he did on the inverse probability problem. At
the time, the calculation of the probability of a number of successes out of a
given number of trials of a binomial event was well known. Bayes worked
on the problem of estimating the probability of the individual outcome from
a sample of outcomes and discovered the theorem for such a calculation that
now bears his name.

Bernoulli, Jacques (often called Jacob or James, 1654—1705). Professor
of mathematics at Basel and a student of Leibniz. He formulated the Law
of Large Numbers in probability theory and wrote an influential treatise on
the subject.

Black, Fischer (1938-1995). Applied mathematician and economist. Worked
both in academia and on Wall Street. Pioneer in the field of options pricing
and among the first to bring higher mathematics to the financial sector. Held
long-standing beliefs about the inherent uncertainties in the markets. Most
famous for coauthoring the Black-Scholes formula, for which his coauthor,
Myron Scholes, received the Nobel Prize in 1997.

Cardano, Girolamo (1501-1576). Italian mathematician. An avid gambler,
he was the first to explore the mathematics of probability in order to improve
his game play. He also recorded the first calculations with imaginary numbers.
Cardano was the first to understand that there are fundamental scientific
and mathematical principles guiding events previously only describable
by chance.

Cauchy, Augustin-Louis (1789-1857). French mathematician and engineer.

Professor in the Ecole Polytechnique and professor of mathematical physics
at Turin. He worked in number theory, algebra, astronomy, mechanics, optics,
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and analysis. His contribution to probability and statistics was the production
of the outline of the first rigorous proof of the central limit theorem, which is
a generalization of the Law of Large Numbers.

Chebyshev, Pafnutii Lvovich (1821-1894). Russian mathematician,
founder of the St. Petersburg School of Mathematics. He made fundamental
contributions to the theory of probability and statistics, including
generalizations of the central limit theorem, which is itself a generalization
of the Law of Large Numbers.

de Moivre, Abraham (1667-1754). French-English mathematician.
Born in France and educated at the Sorbonne in mathematics and physics,
de Moivre, a Protestant, emigrated to London in 1688 to avoid further
religious persecution. A future fellow of the Royal Society of London, de
Moivre supported himself in England as a traveling mathematics teacher and
by selling advice in coffee houses to gamblers, underwriters, and annuity
brokers. De Moivre is recognized in statistics as the first to publish an
account of the normal approximation to the binomial distribution. In fact,
some of de Moivre’s methods are so ingenious as to be shorter than modern
demonstrations of solutions to the same problems.

Doob, Joseph Leo (1910-2004). American mathematician. Produced
substantial work on probability theory, stochastic processes, potential theory,
and much more. Also authored several seminal texts on probability theory.

Einstein, Albert (1879-1955). Probably the most famous scientist of all
time. In addition to his well-known work in several areas of physics, in 1905,
he presented one of the first mathematical treatments of Brownian motion.
It was Einstein’s interest in statistical mechanics that led him to explore
Brownian motion.

Fermat, Pierre de (1601-1665). French lawyer and mathematician.
Through an interest in games of chance, Fermat used his mathematical
prowess to study the mathematics of chance. Following a brief
correspondence with Pascal, the two came to be considered joint founders of
mathematical probability.
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Huygens, Christiaan (1629-1695). Dutch astronomer and mathematician.
While most famous for his discoveries about the planet Saturn and his
invention of the pendulum clock, Huygens was also an early pioneer of the
mathematics of probability. Following a meeting with Fermat, he presented
the first printed work on probability theory.

Ito, Kiyosi (b. 1915). Japanese mathematician and statistician. His
contribution to probability theory was to develop the notion of stochastic
(probabilistic) differential equations.

Kolmogorov, Andrei Nikolaevich (1903—1987). Russian mathematician
who ranks among the greatest of the 20" century. A formalist who helped
axiomatize probability.

Laplace, Pierre-Simon Marquis de (1749-1827). French mathematician
and astronomer. Professor at the Ecole Normale and Ecole Polytechnique,
known for his contributions to calculus, analysis, probability theory,
and physics. One of the ecarliest mathematicians to formalize the theory
of probability.

Levy, Paul Pierre (1886—1971). French mathematician. A pioneer in modern
probability theory. Not a formalist like his contemporary, Kolmogorov; an
important class of stochastic processes bears his name.

Markov, Andre Andreevich (1856—1922). Russian mathematician. Member
of the St. Petersburg Academy of Science. Markov worked on the Law of
Large Numbers and random walks.

Merton, Robert Carhart (b. 1944). Applied mathematician. Student of
Nobel laureate Paul Samuelson. Credited with being among the first to bring
stochastic calculus and other sophisticated probabilistic tools to finance.
Helped develop the Black-Scholes pricing formula (also called Merton-
Black-Scholes). He developed probabilistic and analytic theorems that paved
the way for the now-high-profile field of financial engineering. Recipient of
the 1997 Nobel Memorial Prize in Economics.
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Neumann, John von (1903—-1957). Hungarian mathematician and one of the
original members of the Institute of Advanced Study at Princeton University
(along with Albert Einstein). A genius who contributed to many areas of
mathematics and physics, he is most popularly known as the inventor
of game theory. He authored a celebrated text, Theory of Games and
Economic Behavior.

Newton, Sir Isaac (1642—1727). English mathematician and scientist known
for the discovery of the law of gravity and as one of the fathers of calculus.
Within the field of probability, he is known for his proof of the binomial
theorem. There is also evidence that he gave thought to the variability of
the sample mean, the basis for the central limit theorem. In his last work,
The Chronology of Ancient Kingdoms Amended, published posthumously in
1728, Newton estimated the mean length of a king’s reign to be between 18
and 20 years.

Pascal, Blaise (1623-1662). French mathematician and philosopher. In the
summer of 1654, he exchanged a series of five letters with Fermat, in which
they explored a dice game. The first question they considered was how
many times one must throw a pair of dice before one expects a double six,
as well as how to divide the stakes if a game is incomplete. Because of this
correspondence, they are usually considered the cofounders of probability.

Poisson, Simeon Denis (1781-1840). French mathematician. He published
Recherches sur la probabilite des jugements en matiére criminelle et matiere
civile in 1837, marking the first appearance of the Poisson distribution,
originally found by de Moivre, which describes the probability that a random
event will occur in a time or space interval under the conditions that the
probability of the event’s occurring is very small. Poisson also introduced
the expression Law of Large Numbers, by which he meant that, for a larger
number of trials, the proportion of successful outcomes exhibits statistical
regularity. Although we now rate this work as of great importance, it found
little favor at the time, the exception being in Russia, where Chebyshev
developed his ideas.
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Biographical Notes

Scholes, Myron (b. 1941). Applied mathematician and economist. Coauthor
of the Black-Scholes options-pricing formula. Recipient of the 1997
Nobel Prize in Economics. Scholes laid down fundamental mathematical
assumptions that still dominate derivatives pricing in the financial markets
today. He was a partner at the famously ill-fated hedge fund Long-Term
Capital Management.

Wiener, Norbert (1894-1964). Applied mathematician. He mathematically
extended the work done by Einstein on Brownian motion (hence, the results
are often called Wiener processes). In addition, he generalized and abstracted
several fundamental notions and definitions in probability theory, laying the
foundation for Ito’s work on stochastic analysis.
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