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What Are the Chances? Probability Made Clear

Scope: 

1

Many of the most signi  cant events of our lives involve random 
chance—the people we meet, the accidents that befall us, the 
weather, the stock market, the games we play, the professions we 

fall into. Whether we are assessing the chance of being struck by lightning, 
the chance of winning the lottery, or the chance that it will rain tomorrow, 
we are confronted with trying to describe in as precise a manner as possible 
the likelihood of an outcome that is uncertain. Probability is the study that 
accomplishes the seemingly impossible feat of giving a meaningful numerical 
value to the likelihood that an event will occur when we admit that we do not 
and cannot know what will happen. 

The basic strategy of probability is clear and simple. When we  ip a fair 
coin, one of two equally likely outcomes will occur; namely, it will land 
on heads or tails. Thus, we de  ne the probability of landing on heads as 1 
out of 2, that is, 1/2. Or, if we roll a fair die, because there are six equally 
likely possible outcomes, the probability of rolling any one of them, say a 
four, is simply 1 out of 6, or 1/6. In other words, when probability involves 
equally likely outcomes, the concept of probability is simply a matter of 
counting. However, we soon  nd that the “simple matter of counting” is 
often not simple at all and frequently leads to surprises. A famous example is 
that among any random group of 50 people, there is a 97% chance that two 
or more of them have the same birthday. Our intuition about the likelihood 
of events, particularly rare events, often diverges sharply from the truth. 
As we explore probabilistic surprises, we will re  ne our intuition about 
the probability of random events and will learn more speci  cally what is 
surprising and what is not. We will learn why coincidences are so common 
and why we must learn to expect the unexpected. 

In no place is the role of probability clearer than in games of chance; thus, 
we will introduce some of the basic ideas of probability using cards, dice, 
and roulette. In fact, it was in the arena of gambling that the mathematical 
investigation of probability  rst arose. In the 17th century, a gambler by the 
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name of Antoine Gombault, the Chevalier de Méré, sought the advice of 
leading mathematicians of the day with the goal of improving his ability to 
make good decisions when playing dice. In answering Gombault’s questions, 
Pierre Fermat and Blaise Pascal developed the fundamental concepts 
of probability. 

Probability is the study of events whose outcomes are random. But 
randomness is a subtle concept. Events with random outcomes have the 
property that no particular outcome is known in advance; however, in the 
aggregate, the outcomes occur with a speci  c frequency. For example, when 
we  ip a fair coin, we do not know how it will land, but if we  ip the coin 
millions of times, we know that it will land heads up very close to 50% of 
the time. The distinction between our ignorance about the outcome of a 
particular trial and our knowing the aggregate behavior of many trials is the 
peculiar domain of randomness and probability. 

Probability has applications in many arenas. For example, randomness and 
probability are central to the concept of statistical inference. But surprisingly, 
probability is involved in the solutions to many questions that do not at 
 rst appear to contain any element of randomness. For example, there are 

methods by which one can take a very large number, such as one with several 
hundred digits, and test whether or not it is prime using methods that involve 
probability. It is certainly not obvious how randomness and probability could 
possibly play a role in such a situation, because ultimately, the number is 
prime or it’s not—there is no randomness involved. Another application of 
randomness and probability occurs in psychology. If we want to train our 
dogs to respond to a signal and keep responding longest, the best method 
may be to reward them randomly rather than on any  xed pattern. In this way, 
the dog always has the hope that the next reward is just one more good deed 
away. Of course, applying these insights to the treatment of people is most 
suggestive. Other examples in which randomness and probability arise occur 
in game theory, the study of strategic decision-making. In game theory, often 
the optimal strategy is one that involves intentionally including randomness. 
Optimal business strategies or sports strategies often are probabilistic in 
nature rather than deterministic. This feature complicates the question of 
how to judge whether we have adopted a good strategy. When probability 
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is involved, even the very best strategy can have a poor outcome by 
chance alone. 

Einstein’s famous quotation, “God does not play dice with the universe,” 
expressed his philosophical resistance to the probabilistic nature of quantum 
mechanics. Quantum mechanics asserts that subatomic particles are not 
best described as being in a certain place at a certain time but, instead, are 
better described with probability distributions, suggesting that an electron 
has some chance of being at any location in the universe at any moment. 
In fact, randomness and probability lie at the heart of many of the scienti  c 
descriptions of the physical and biological worlds. The basic idea of genetic 
inheritance is that the parents randomly contribute different genetic material 
to offspring, which then determines many features of the children. Evolution 
relies entirely on probabilistic occurrences. But we do not need to look to 
grand scienti  c theories to  nd examples of probability. We see probability 
in the newspaper every day when we read a weather report that says there is 
a 30% chance of rain. We’ll see what that statement actually means. 

Probability is a fascinating study that has many real-world applications. 
But one of the most intriguing aspects of all is that the basic meaning of 
probability in the real world is not clearly agreed upon by probabilists. In a 
rough sense, some view probability as measuring an individual’s assessment 
or belief of the likelihood of a future event, while others view the probability 
of a future event as a fact independent of any individual’s opinions. Another 
kind of distinction is that some probabilists allow probability to be applied to 
statements that do not entail randomness, such as “There was life on Mars,” 
whereas others feel that probability should refer only to repeatable events 
with random outcomes. The different views of probability are intriguing to 
consider and, in some cases, have practical implications. Probability presents 
us with a rich  eld of intriguing inquiry that contains questions and insights 
that are mathematical, practical, and philosophical. 
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Our Random World—Probability De  ned
Lecture 1

It would be nice to say, “Well, our challenge in life is to get rid of 
uncertainty and be in complete control of everything.” That is not going 
to happen. One of life’s real challenges is to deal with the uncertain and 
the unknown in some sort of an effective way; and that is the realm 
of probability.

In many arenas, our understanding of our world involves processes and 
outcomes that we view as the result of random chance. We read in the 
newspaper that there is a 30% chance of rain. We talk about the chance 

of winning the lottery. Over the last century, scienti  c descriptions of the 
world have increasingly included probabilistic components. In quantum 
mechanics, the very location of subatomic particles is viewed as a matter of 
probability. The central concept of genetic inheritance and evolution is the 
random transmittal of genetic material from parents to offspring. Random 
happenings are those whose individual outcomes we do not or cannot know 
in advance but that will display regularity in the aggregate. The amazing 
accomplishment of probability is to put a meaningful numerical value 
on things we admit we do not know. Our challenges in this course are to 
understand what that numerical measure of chance is, to develop an intuition 
about probability in real-life situations, and to see a myriad of applications 
of probability in games, science, business, and many other aspects of life.

What are the chances? If you buy a lottery ticket, what are the chances that 
you will be rich? If you walk across a golf course on a stormy day, what 
are the chances that you’ll be hit by lightning? If you bet on red in roulette, 
what are the chances you’ll win? If you buy stocks and bonds, what are 
the chances those investments will pay off? If you have a fever and other 
symptoms, what are the chances you have a serious disease? A hurricane 
is spotted off the East Coast. What are the chances that it will cause great 
damage? What are the chances that a child brought up by a drug addict will 
become a criminal? What are the chances that an e-mail advertisement will 
lead to a sale? All these examples are real-life situations in which we are 
confronted with possibilities whose outcomes we do not know.
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Dealing with the uncertain and the unknown is the realm of probability. One 
of life’s challenges is to deal with the uncertain and unknown effectively. 
Probability accomplishes the amazing feat of giving a meaningful numerical 
description of the uncertain and unknown. It gives us information to act on. 
Probability decisions can be as inconsequential as deciding whether or not to 
take an umbrella if there is an 80% chance of rain. Making medical decisions 
based on probability, however, can have life-and-death consequences.

In many arenas, our understanding of our world involves processes 
and outcomes that we view as the result of random chance. Over the last 
two centuries, scienti  c descriptions of our world increasingly include 
probabilistic components. Physics, from thermodynamics to quantum 
mechanics, involves questions of probability—molecules moving randomly 
around and causing things to happen by the aggregate force of probabilistic 
occurrences. In biology, genetics and evolution are both based on random 
behavior. Often, underlying random behavior manifests itself in predictable, 
measurable observations. Scienti  c descriptions frequently are probabilistic 
analyses of random occurrences. The prevalence of probabilistic components 
of scienti  c descriptions represents a major paradigm shift in our concept of 
what scienti  c explanations are.

Probability describes what we would expect from random phenomena if 
they were repeated many times. But the concept of randomness is subtle. 
Outcomes of individual random events are unknown, but the aggregate 
behavior of random events is predictable. The amazing accomplishment of 
probability is to put a meaningful numerical value on things we admit we 
do not know. When we roll a fair die, we do not know which side will land 
uppermost on any individual throw. However, if we roll 60 dice, we expect 
that each side would land up about 1/6

 
of the time. One of the dif  culties of 

probability is that we expect a certain result on average, but we also expect 
to be off by a little. When we roll 60 dice, we do not expect each number to 
appear exactly 10 times. One of the challenges of this course is to understand 
what to expect from randomness. A principal goal of probability is to give 
a numerical measure of chance. We will see a myriad of applications of 
probability in games, science, business, and many other parts of life.
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The course is organized as follows: In this lecture, we will introduce the basic 
idea of probability. Lecture 2 explores the question: What is randomness? 
Lecture 3 is about expected value. Expected value is a numerical measure 
that assesses the value of various possible outcomes to a probabilistic 
occurrence. Expected value is useful in making decisions, such as those 
involving investments or other risks. Lecture 4 takes us on a random walk, 
in which the direction we take at each step is randomly selected. Random 
walks have applications in physics, biology, and  nance. Lectures 5 and 6 
show us that randomness and probability are central components of modern 
scienti  c descriptions of our world in physics and biology. Lecture 7 explores 
the world of  nance, particularly probabilistic models of stock and option 
behavior. Probability can be used to  nd answers to questions that seem 
to have no random or probabilistic component to them. Lecture 8 explores 
unexpected applications of probability. Lectures 9 and 10 discuss conditional 
probability and some surprisingly counterintuitive examples of probabilities. 
One view of probability is that it can describe a level of belief. Lecture 11 
explores this perspective and the Bayesian view of probability. In the  nal 
lecture, we will see some probabilistic conundrums that arise when there are 
in  nitely many possible outcomes to a random trial. We end by reviewing 
how widely probability is applied in the world.

We begin our investigation of probability with gambling. Gambling presents 
some clear examples of randomness. It was in the arena of gambling that 
the mathematical investigation of probability  rst arose. In the 17th century, 
a gambler by the name of Antoine Gombault, the Chevalier de Méré, 
sought the advice of Pierre Fermat and Blaise Pascal, who developed the 
fundamental concepts of probability. A die has six sides. In a fair die, we 
presume that after rolling the die, any one of the sides is as likely to arise 
as any other. To give a numerical measure to the probability of a fair die 
coming up with a  ve, say, we note that there are six equally likely possible 
outcomes; a  ve is one of these outcomes, so its probability of arising is 
1 out of 6, or 1/6. In general, if there are n equally likely outcomes, then 
the probability of one of those outcomes occurring is  1/n. Gambling games 
present us with examples in which there are  nitely many possible outcomes 
to the probabilistic occurrence, that is, discrete probability.



7

The concept of probability arising from dice and coin examples leads us 
to some basic de  nitions and observations about discrete probability. An 
outcome is a possible result of a single trial, observation, or experiment 
that we are considering. An event is a set of outcomes. For example, if 
we consider rolling a die, getting a  ve is an outcome. Rolling an even 
number is an event. Probability 1 (or, equivalently, 100%) means that the 
event is certain. Probability 0 means that the event will not happen. If we 
add up all the probabilities of all the possible outcomes of a trial, we get 1. 
If the probability of an event is p, then the probability of the event’s not 
occurring is 1 – p. For example, the probability of rolling a fair die and getting 
a 5 is 1/6, so the probability of rolling a fair die and getting something other 
than  ve is 1 – 1/6

 
= 5/6. In practice, it 

is often easier to measure the probability 
that an event does not happen; for 
this reason, we will use the 1 – p 
observation frequently.

The basic principle of probability is 
simple when dealing with equally likely 
outcomes. Simply count how many total 
outcomes are possible, count how many are in the event you are considering, 
and divide. The problem is that “simply” counting is not simple. Let’s think 
about poker. The value of hands is really an ordering of the probabilities 
of getting the hands. What is the probability of getting all four aces when 
dealt  ve cards? To compute the probability of being dealt all four aces, 
we need to count the total number of  ve-card hands and compute the 
total number of hands that contain all four aces. Here are the answers: The 
number of possible hands containing all four aces is 52 – 4, or 48. The 4 
represents the four aces, leaving only 48 cards that could be the  fth card 
in a  ve-card hand. We can also calculate the number of possible hands: 
52 × 51 × 50 × 49 × 48 = 311,875,200. But some of those hands will have the 
same cards, only in a different order; thus, we calculate the total number of 
different orderings of the  ve cards: 5 × 4 × 3 × 2 × 1 = 120. 

Often, underlying random 
behavior manifests 
itself in predictable, 
measurable observations.
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The number of distinct  ve-card hands is (52 × 51 × 50 × 49 × 48)/
(5 × 4 × 3 × 2 × 1) = 311,875,200/120 = 2,598,960. The probability of 
getting four aces is computed by dividing the total number of possible hands 
with four aces (48) by the total number of possible hands: 48/2,598,960

 
= 

0.00002. To compute the probability of being dealt a straight (see Glossary 
for de  nition), we need to count the total number of  ve-card hands and 
compute the total number of hands that contain a straight. Here are the 
answers: The number of possible hands is 2,598,960. The number of possible 
hands containing a straight is 10,200. The probability of getting a straight is 
10,200/2,598,960

 
= 0.004. To compute the probability of being dealt a  ush, 

we need to count the total number of  ve-card hands and compute the total 
number of hands in which all the cards are in the same suit. (Again, straight 
 ushes are not counted as  ushes.) Here are the answers: The number of 

possible hands is 2,598,960. The number of possible hands containing a 
 ush is 5108. The probability of getting a  ush is 5108/2,598,960

 
= 0.002. 

Because the probability of being dealt a  ush is less than the probability of 
being dealt a straight, a  ush beats a straight in poker.

In summary, if you have an experiment or a trial that has equally likely 
outcomes, to compute the probability of some event, you count the number of 
outcomes in the event and divide by the total number of outcomes possible. 
That fraction is the probability of that event. 

Edward B. Burger and Michael Starbird, Coincidences, Chaos, and All That 
Math Jazz: Making Light of Weighty Ideas.

———, The Heart of Mathematics: An invitation to effective thinking, 
2nd ed.

Ian Hacking, The Taming of Chance.

Sheldon Ross, A First Course in Probability.

    Suggested Reading
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1. Do you think that probability will play an increasing or decreasing role 
in explanations in science, business, social science, and other  elds as 
they continue to develop?

2. Three couples, that is, six individuals, are seated randomly around a 
round table. What is the probability that the members of at least one 
couple are seated next to each other?

    Questions to Consider
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The Nature of Randomness
Lecture 2

The basic goal of probability is to describe what it is that we should expect 
from randomness, and so in this lecture we’re going to try to undertake 
an understanding in some detail of the nature of random processes.

What is random? Can we ascertain whether phenomena in the 
world are best described by randomness or are better described 
by  nding some underlying deterministic reason for what 

we observe? Questions about what is random arise in considerations of 
everything from a coin toss to dots on a page, stars in the sky, or the digits of 

. Trying to produce lists of numbers that appear random is an unexpected 
challenge. If we look at a list of digits, can we determine whether or not 
they were generated by a random process? Many tests about randomness can 
ferret out the signature of nonrandom generation. One of the paradoxes of 
randomness is that within the random, we will  nd surprising instances of 
patterns that occur by chance alone.

One goal of probability is to describe what to expect from randomness. The 
challenge is to understand in some detail the nature of random processes. 
Surprisingly, clear order comes from random activities. Randomness refers 
to situations in which we don’t know any individual result, but we have a 
sense of what will happen in the aggregate, that is, if an experiment or a trial 
is done over and over again. This idea is captured in a theorem called the 
Law of Large Numbers. We can illustrate this theorem ourselves by doing 
various experiments, such as rolling a die and calculating the percentage of 
times we roll a three. The more times we roll the die, the closer we come to 
the predicted probability of rolling a three, 1/6, or 0.1667. Throwing the die 
6 times, we might get no threes, but in rolling the die 60,000 times, we come 
very close to the expected 0.1667.

The Law of Large Numbers works even when referring to relatively rare 
events If we draw three cards at random from each of three decks, the 
probability that the three cards will be identical is quite small: 1/52 × 1/52 
= 1/2704, or 0.00037. After 2704 trials, we got no such matches, but after 
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2,704,000 trials, we got 1037 such matches: 1037/2,704,000 = 0.00038, very 
close to the probability.

There are counterintuitive aspects of what is produced by randomness. A 
visual example illustrates this phenomenon: Working with a square, we pick a 
place on the vertical axis at random and on the horizontal axis at random and 
put a dot there. We do this 12 times to produce 12 dots. We expect the dots to 
be more evenly distributed rather than the clusters and gaps we see. We can 
also see other patterns in random arrays. Look at the night sky, for example, 
and see the various constellations that have been identi  ed for centuries. 
Flipping a coin also illustrates randomness. First, we  ip a coin and record 
the results, heads (Hs) and tails (Ts), over 200  ips. Then, we ask a human 
being to write down a random list of 200 Hs and Ts. Strings of repeated Hs 
or Ts in the  ips show up more often than in the human-generated list of 
HTs. Speci  cally, when you  ip a coin 200 times, the probability of having 
a string of six Hs or six Ts is more than 96% and of having a string of  ve 

Hs or Ts is 99.9%. Our simulation shows that even if 
you have  ipped 10 Hs in a row, the next  ip is just 
as likely to be H again as it was the  rst time you 
 ipped the coin. The coin has no memory.

Rare events are expected in probability. As we have 
seen, the probability of getting any particular  ve-
card hand from a deck of cards, whether an ordinary 
hand or a royal  ush, is 1/2,598,960. The probability 
of winning the Powerball lottery is 1/146,000,000, 

but someone is very likely to win. Even very rare events are almost certain 
to happen given enough opportunities. In 1929, the astronomer Sir Arthur 
Eddington wrote, “If an army of monkeys were strumming on typewriters, 
they might write all the books in the British Museum.” It is said, then, that 
if monkeys randomly type, they will eventually write Hamlet. Let’s look at 
this further. If, since the time of the Big Bang, a billion 18-character patterns 
were generated per second on a 100-key keyboard, chances are less than 
1/1,000,000,000 that “To be or not to be” will be generated. An enterprising 
author made money with an observation a few years ago when he wrote The 
Bible Code. For example, he found that if he looked at every 1945th letter 
somewhere in the Bible, it spelled out “Atomic holocaust, Japan, 1945.” 

One goal of 
probability is to 
describe what 
to expect from 
randomness.
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Mathematicians found mail and bomb in Ted Kaczynski’s manifesto.When 
we look retrospectively, things that appeared to be random can be explained. 
Stock movements can be explained in retrospect. Some psychics and stock 
analysts make correct predictions by chance alone.

How can we distinguish a set that was created from a random process versus 
some other method? The strategy is to analyze what patterns we would expect 
to occur by random chance. Suppose we consider  ipping a coin. Roughly 
half the results should be Hs and half Ts. As we  ip more coins, that fraction 
should get closer and closer to 50%. We can get more re  ned and determine 
what fraction of HHs or TTs we should expect and so forth. We can compute 
the probability of each pattern. By seeing whether the appropriate frequency 
of that pattern appears or does not appear, we gain evidence about the 
likelihood that the list of Hs and Ts was generated randomly.

Some examples bring up challenging philosophical questions about the 
meaning of randomness. Consider the  rst 10,000 digits of . The digits 
look random from the point of view of the tests concerning the existence of 
patterns, yet we know they are completely determined.

Digit Number of Appearances in 
the First 10,000 Digits of 

0 968
1 1026
2 1021
3 974

4 1012
5 1046
6 1021
7 970
8 948
9 1014
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What kinds of events are actually random in the world and which 
are deterministic? These are issues that present us with a real 
philosophical challenge. 

Ivars Peterson, The Jungles of Randomness: A Mathematical Safari.

1. Do you think that analyzing or modeling some phenomenon as if it were 
random devalues or depersonalizes the situation? Do you think that such 
an analysis skirts the actual meaning?

2. On learning that some girl in the neighborhood has committed a minor 
crime, how do you react to a statement such as: “Well, it was bound to 
happen; statistics show that about 20% of kids do that”?

    Suggested Reading

    Questions to Consider
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Expected Value—You Can Bet on It
Lecture 3

There are consequences to different alternatives of the future, and we 
have to sort of weigh them.

When we bet money in a gambling game, such as roulette, we know 
the probability of winning, and we know what our winnings will 
be if we win. We do not know, however, the speci  c outcome. 

If we repeated that exact bet millions of times, we would win a predictable 
fraction of the time; thus, the average win or loss per bet is a predictable 
expectation over the long haul. That is to say, while we do not have 
deterministic regularity, we have statistical regularity. This average win or 
loss is called the expected value. As we saw in the last lecture, the Law of 
Large Numbers tells us that as random trials are repeated more and more, 
the fraction of times that a particular outcome occurs will more accurately 
re  ect the probability of that outcome, and thus, the actual average win or 
loss per bet will become close to the expected value. The concept of expected 
value allows us to assess the wisdom of various random enterprises that have 
payoffs or consequences. Betting on red in roulette, buying insurance, or 
buying a lottery ticket are all susceptible to expected-value analysis. As is 
common with probability topics, expected-value considerations lead us to 
some interestingly paradoxical situations. Expected 
value is our  rst attempt to understand what kind 
of regularity these probabilistic experiments have.

Many daily-life decisions involve randomness. 
Buying stock, having surgery, studying for a test, 
and buying insurance all involve making such 
decisions. How do we make these decisions? We consider hypotheticals and 
perform a sort of “cost-bene  t analysis” for each possible outcome. One 
math strategy is to start with ordinary thinking and abstract it. As Albert 
Einstein said, “The whole of mathematics is nothing more than a re  nement 
of everyday thinking.” We need to balance the likelihood of the various 
outcomes with the cost or bene  t of each, which leads to the concept of 
expected value.

Many daily-life 
decisions involve 
randomness.
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Let’s use gambling, speci  cally roulette, to look further at this concept. 
There are 38 possible outcomes in American roulette. Betting $10 on a 
single number will pay $360 for a winning bet. The probability of winning is 
1/38; thus, if we place a bet 38,000 times on 13, we should win about 1000 
times (and lose 37,000 times). Therefore, we should win a total of $360,000. 
However, we would have paid out $380,000. Our loss is $20,000; per bet, 
the average loss is –$20,000 divided by 38,000 bets, or –$0.53. Hence, the 
expected value of the $10 roulette bet is –$0.53. On average, the bettor will 
lose 53 cents per bet. Expected value is an average. We have a collection of 
outcomes, and we have a probability for each outcome’s occurring. Each 
outcome has a value associated with it. In this case, for 13, the value is $350, 
and for the other 37 numbers, it is –$10 (the money bet on the non-winning 
number). Let O1, O2, O3, … denote the possible outcomes. Let P(O) denote 
the probability of an outcome and V(O) denote the value of an outcome. 
Then, the expected value is: P(O1)V(O1) + P(O2)V(O2) + P(O3)V(O4) + … 
and so on through however many possible outcomes you have. 

If you bet $10 on red, your chances of winning are 18/38 and of losing are 
20/38. The payout of a $10 bet on red is $20, for a gain of $10. Therefore, 
the expected value of the $10 bet is:

 18 20($10) ( $10) $0.53
38 38

 

Casinos count on the Law of Large Numbers to ensure their pro  ts, as the 
table of roulette simulations illustrates.

Repetition Average Gain in 
10,000 Bets

Average Gain in 
1,000,000 Bets

1 –0.41 –0.50
2 –0.66 –0.54
3 –0.56 –0.52
4 –0.65 –0.52
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Repetition Average Gain in 
10,000 Bets

Average Gain in 
1,000,000 Bets

5 –0.41 –0.51
6 –0.70 –0.55
7 –0.56 –0.52
8 –0.44 –0.52
9 –0.51 –0.53
10 –0.58 –0.54

When we made 10 repetitions of 10,000 bets on red, the average is very 
close to the predicted average loss of –$0.53. When we made 10 repetitions 
of 1,000,000 bets on red, the average is even closer to the predicted loss 
of –$0.53.

Let us look at unexpected instances of expected value. Suppose someone 
plays roulette 35 times, betting on one number each time. The expected 
value of each bet is –$0.53. And the expected total value of the 35 rounds 

= 35 1 37350 10
38 38

, or –$18.42. Surprisingly, the probability that a 

bettor would be ahead after 35 rounds is 1–
3537

38
, or 0.61. 

However, the bettors who are ahead are only slightly ahead, and the people 
who are behind have lost $350. Because the expected value gives weight, the 
expected value is negative. 

Here is another example. Let’s say you own a pub and you have a dart game 
with four rings. You wish to have the payoff be $4 for hitting the inner circle, 
$3 for the next largest ring, $2 for the next largest, and $1 for hitting the 
large outermost ring. You assume anyone who throws the dart has an equal 
chance to hit anywhere. You calculate the area of each ring and  nd that the 
largest has 44% of the area, 31% for the second largest, 19% for the third, 
and 6% of the area is in the small center. 
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You can calculate the average expected payoff:

0.06 $4 0.19 $3 0.31 $2 0.44 $1 $1.87  

If you decided to make the game completely fair, you would charge $1.87 
per dart thrown, because a fair game is one where the expected value is 0.

Let us consider another unexpected surprise in dealing with the expected 
value. What is the expected number of rolls of a die until a  ve appears? If 
we roll the die 6000 times, we expect 1000 of those rolls to result in a  ve. 
The simulation results are very close to 1000. Now we ask what the average 
gap is between  ves in that long list of 6000 numbers. The answer is 6. We 
have 6000 numbers, around 1000 of which are  ves. But what if we take the 
long list of 6000 numbers and randomly choose any point on that list and ask 
ourselves what the gap is between  ves? What is the expected value of the 
length of the gap (the number of spaces between two consecutive  ves)? The 
answer is 11, not 6. The reason the answer comes out bigger than 6 is that we 
are more likely to choose long intervals than short intervals. Likewise, if we 
cut a string to represent the various lengths on the list between  ves and mix 
the pieces in an urn, we are more likely to choose a longer piece from the urn 
than a shorter one. 

Edward B. Burger and Michael Starbird, The Heart of Mathematics: An 
invitation to effective thinking, 2nd ed.

Sheldon Ross, A First Course in Probability.

Suggested Reading
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1. Suppose you play a game with a weighted coin that lands heads up 2/3
of the time and tails up 1/3

 
of the time. If you are paid $6 if it lands 

heads and $4 if it lands tails, what is the expected value of playing the 
game once?

2. Expected value does not mean that the expected value is what will 
happen. When lotteries have very high prizes, the expected value 
of buying a $1 lottery ticket can be $2 or more. Even under those 
circumstances, why is it not a good investment for you to mortgage your 
house and buy lottery tickets?

    Questions to Consider
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Random Thoughts on Random Walks
Lecture 4

Life, of course, is the source of most mathematical ideas. We look at 
things that happen in the world, and then we try to abstract from those 
some principles that become the mathematics that we’re trying to 
develop. This is certainly true in the case of talking about probability 
and randomness.

Suppose you want to go for a walk, but you feel in a particularly 
indecisive mood. You decide to walk along a straight north-south road 
while letting fate decide your direction at each block. You take out a 

coin and  ip it. If it is heads, you walk one block north; if tails, one block 
south. At each block, you make that random choice. The path you take is 
called a random walk. Many intriguing questions arise in this indeterminate 
perambulation: Will you ever return home? Will you ever venture 100 blocks 
away? The analysis of random walks helps us to analyze real-life situations, 
such as counting ballots during an election, and it explains the sad fate of 
persistent bettors known as the gambler’s ruin.

This lecture addresses the phenomenon of random  uctuations. Examples 
of random  uctuations include the stock market, ballots in an election, coin 
 ipping, genetic drift, and Brownian motion. The simplest example is the 

random walk. As we leave home (position 0), if we  ip a coin and get heads, 
we go one block north (position 1); if we  ip tails, we go one block south 
(position –1). When we have walked one block, we then  ip the coin again 
and go another block north or south, depending on the result, and so forth. 
We can see this walk recorded on a graph. How far away do you get? The 
answer is probabilistic because it depends on  ips of a coin. You might also 
ask, when we take a random walk, what is the probability that, from position 
1, we will return to where we started.

To answer that question, we can compute as follows: P = (1/2) + (1/2)Q, in 
which P is the probability that starting at 1, the walk eventually gets back 
to 0, and Q is the probability that starting at 2, the random walk eventually 
gets to 0. We can ask what the probability is that starting at position 2, we 
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will return to where we started. To get from 2 to 0, the walk must  rst get to 
1 (probability P), then eventually to 0 (probability P). Thus, Q = P2, and we 
arrive at the equation:

 21 1 1 1
2 2 2 2

P Q P  

Working out the equation leads to the result P = 1; the probability is 100% 
that we will indeed return to 0. Although some random walks never return 
to where you began, the fraction of walks that have not returned becomes 
closer and closer to 0 as you take longer walks. Thus, the probability of never 
returning during an in  nitely long walk is 0. Another question is: What is 
the probability that we will eventually get 100 blocks away from where we 
started? The surprising answer is again P = 1. 

The gambler’s ruin is a variation of a random walk. A gambler starts with 
$2000. Each bet is $200, with even odds. Let’s say the game involves  ipping 
a coin, with heads meaning the gambler wins and tails meaning the gambler 
loses. As we have seen in the random walk, the probability = 1 that you will 
eventually get back to 0. This means that the gambler will eventually lose 
everything, even in a fair casino.

Bertrand’s ballot theorem deals with an election between two candidates in 
which the winner, A, receives a votes, and the loser, B, receives b votes, 
where a (52) is greater than b (47). Suppose the votes are tallied by drawing 
them out of the ballot box one by one, adding 1 to the proper person’s score. 
What is the probability that the eventual winner will always be ahead, from 
the very  rst vote counted?

This problem can be rephrased as a graphical problem. Consider the graph 
whose horizontal axis is time (or ballot number) and whose vertical axis is the 
amount by which the eventual winner is ahead. The answer to the question of 
what the probability is that the eventual winner will always be ahead, from 
the very  rst vote counted, turns out to be (a – b)/(a + b).
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This discussion brings up the question of potential ties. Suppose you wish to 
hire a tennis pro. Two candidates have played one match against each other 
each day for the past year, keeping a running tally of how many matches 
each has won. The tally shows that one player was ahead for the entire last 
nine months, so that player seems to be better. By comparing this situation 
with randomness, we can test the strength of that conclusion. Knowing what 
to expect from randomness informs our interpretation of the results. Let us 
consider the case of randomness in which, for 366 days in a row, two people 
 ip a coin to win or lose, and let’s see where we might expect the last tie to 

occur. We  nd, in fact, a surprisingly high probability of one person being 
ahead for most of the year. In fact there is a 1/2

 
probability of one person 

being ahead for the entire last half of the 
year and a 1/3

 
probability of one person 

being ahead for the entire last nine months 
of the year—by luck alone.

If our case were expanded to north-south-
east-west, then we would have a two-
dimensional random walk. Such a random 
walk has some interesting properties. 
We can ask again: What is the chance of 
returning to the origin? As with a one-

dimensional random walk, the probability of returning is 1. However, the 
rate at which we return is not so quick. In the 30 simulations we ran, it took 
anywhere from just 4 steps up to more than 100,000,000 steps before we 
returned to the origin. Peculiarly enough, in the case of a three-dimensional 
random walk, which allows up or down as an additional choice, we have 
only a 35% chance of returning to the origin. 

John Haigh, Taking Chances: Winning with Probability.

Examples of random 
 uctuations include the 

stock market, ballots 
in an election, coin 
 ipping, genetic drift, 

and Brownian motion.

    Suggested Reading
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1. Suppose as you  nish grocery shopping there are two checkout counters 
open, and both seem to have an equally long line. You pick a line. Does 
it seem that more often than not you pick the slow line? How does the 
fact that ties are less frequent than our intuition would predict relate to 
this situation?

2. Suppose two people play a game where one  ips a coin and the other 
guesses how it will land. If the person guesses correctly, the guesser gets 
$1 from the  ipper; if the guesser is wrong, the  ipper gets $1 from the 
guesser. Suppose the  ipper starts out with $10 more than the guesser. 
What is the probability that at some time in the future, if they play 
forever, they will have equal amounts of money?

    Questions to Consider
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Probability Phenomena of Physics
Lecture 5

Today’s lecture concerns the role of probability in descriptions of the 
physical world. The probabilistic analysis of random behavior lies at the 
very heart of how we understand physical phenomena, from everything 
from quantum mechanics to the weather.

Quantum mechanics describes the location of a subatomic particle 
of physics as a probability distribution. Our intuition would prefer 
elementary particles to be more like tiny round balls, each of which 
is at some speci  c place at each moment. But quantum mechanics 

suggests that an electron has some chance of being at any location in the 
universe at any moment. Interestingly enough, Einstein philosophically 
opposed the probabilistic nature of quantum mechanics. Weather predictions 
give us probabilistic descriptions of our world that have more obvious 
consequences. We might read, “There is a 30% chance of rain tomorrow.” 
Then our question becomes: What exactly does that mean?

The probabilistic analysis of random behavior lies at the heart of physical 
phenomena, from quantum mechanics to the weather. One of the most basic 
features of understanding the world is that physical matter is made up of 
atoms and molecules. At the turn of the 20th century, the scienti  c community 
was not so clear that atoms and molecules actually existed. It turned out that 
strong evidence for their existence was an application of probability, and one 
of the major players in that analysis was Albert Einstein. It was Einstein’s 
theoretical work on Brownian motion that allowed experimentalists to do 
actual measurements that helped con  rm the reality of atoms and molecules. 
Brownian motion was discovered in the early 1800s by botanist Robert 
Brown, who made microscopic observations of grains of pollen on the 
surface of water and noticed that these grains appeared to constantly and 
randomly move in a jittery way on the surface of the water. In his 1905 
paper, Einstein hypothesized that Brownian motion was caused by actual 
atoms and molecules hitting the grains of pollen, impelling them to take a 
“random walk” on the surface of the liquid. Einstein wrote down a formula 
that predicted what distance a piece of pollen would move on average per 
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unit time. Experiments accorded with Einstein’s predictions and, thus, were 
strong evidence for the actual existence of atoms. In a sense, Einstein’s work 
encouraged the mode of reasoning that led to the inherently probabilistic 
nature of quantum mechanics. In quantum mechanics, the most fundamental 
objects that make up matter are to be viewed, not as being in one location at 
one time, but instead, as having a probability of being anywhere. Einstein 
never accepted the probabilistic nature of quantum mechanics. Probability 
plays a central role in physical theories, from quantum mechanics up 
the ladder of different sizes of interacting matter to chemistry and into 
macroscopic matters, such as the weather, which is where we now turn 
our attention.

Suppose you read that there is a 30% chance of rain in your region tomorrow. 
What should that statement mean? First, we need to dispose of the issue 
of threshold, that is, how much rain is rain. The answer is 0.01 of an inch. 
Second, what does it mean that there is a 30% chance of rain at one spot? 
It means that on about 30 out of 100 days in 
which the weather circumstances are like they 
are today, you would expect at least 0.01 inch of 
rain in that spot.

The problem arises when we hear we have a 
30% chance of rain in a whole region. Because 
there are different points in the region, we must 
deal with these variations. The simplest case is if 
the region is very small and very homogeneous 
in its character. In that case, the conditions are 
indeed the same throughout the region for the 
30% probability of rain. In another case, though, you might have 50 acres 
out of a 100-acre region where the probability of rainfall is 40%, and in the 
other 50 acres, it is 20%. The expected value of the probability of rain for 
the whole region is 30%. In another case, though, you might have 30 acres 
out of a 100-acre region where the probability of rainfall is 100%, and in the 
other 70 acres, it is 0%. Again, the expected value of the probability of rain 
for the whole region is 30%. In another case, you might have 25 acres out 

At the turn of 
the 20th century, 
the scienti  c 
community was not 
so clear that atoms 
and molecules 
actually existed.
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of a 100-acre region where the probability of rainfall is 40%, 50 acres where 
the probability of rainfall is 30%, and in the other 25 acres, it is 20%. Again, 
the expected value of the probability of rain for the whole region is 30%. 

The consequence to the above conclusions is that on average, the amount of 
the area that will get rain is 30%. In other words, suppose for each day of 10 
days, we knew how many square inches were rained on; we would add all 
these square inches, then divide by 10 to get 30%. For example, let’s use a 
familiar example where 30 acres out of a 100-acre region always get rain, 
and in the other 70 acres, it never rains. Again, on average, 30% of the region 
gets rain. Suppose now that every point in the region has a 30% chance of 
rain. We can look at each tiny square inch and record rainfall for 10 days 
there. We would expect to have rain on 3 of those 10 days. Expanding our 
region to 10 square inches over 10 days, we see that every square inch would 
expect to be rained on for 3 of the days. Thus, the number of square inches 
rained on averaged over the 10 days is 3 square inches, which is 30% of the 
total area. We would get the same result if we looked at a situation where 
half the region gets 40% chance of rain and the other half, 20%.

The de  nition of probability of precipitation is tricky. The of  cial de  nition 
from the National Weather Service is, at best, misleading: “Technically, the 
probability of precipitation (PoP) is de  ned as the likelihood of occurrence 
(expressed as a percent) of a measurable amount (.01 inch or more) of 
liquid precipitation (or the water equivalent of frozen precipitation) during 
a speci  ed period of time at any given point in the forecast area. Forecasts 
are normally issued for 12-hour time periods.” The de  nition should be 
written: “Technically, the probability of precipitation (PoP) is de  ned as the 
likelihood of occurrence (expressed as a percent) of a measurable amount 
(.01 inch or more) of liquid precipitation (or the water equivalent of frozen 
precipitation) during a speci  ed period of time at a random point in the 
forecast area. Forecasts are normally issued for 12-hour time periods.” A 
multiple-choice question given to the public to determine if they understand 
the phrase “The chance of rain is 30%” proves that most Americans do not 
understand the de  nition of probability of precipitation. 
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Ian Stewart, Does God Play Dice? The New Mathematics of Chaos.

1. A consequence of quantum physics is that there is a non-zero probability 
that the moon will spontaneously fall on our heads tomorrow. Why 
shouldn’t we be worried about that possibility?

2. Currently, weather prediction is viewed as a probabilistic enterprise. Do 
you think that with better knowledge of weather patterns, the randomness 
will be removed and weather prediction will become deterministic? The 
theory of mathematical chaos suggests not.

    Suggested Reading

    Questions to Consider
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Probability Is in Our Genes
Lecture 6

The basic concept of genetics is that the genetic material from each of 
the parents is randomly combined; that is, part of the genetic material 
of the father and part of the genetic material of the mother are combined 
to become the genetic material for the offspring. And the offspring then 
have different traits according to which material was contributed by 
the two parents.

One of the most basic issues in biology is to describe how 
characteristics of parents are passed on to their offspring. The basic 
idea is that each parent randomly contributes part of that parent’s 

genetic material to the offspring. The combination of genetic material 
received from the parents determines characteristics of the offspring. Because 
randomness is centrally involved in the passing down of genetic material, 
genetics, the science of inheritance of traits and characteristics, is modeled 
probabilistically. The simple Mendelian model of dominant and recessive 
genes provides a probabilistic answer to the question: What traits will the 
offspring of two speci  c parents have? Then, probability is used to show 
the distribution of traits over a whole population and to describe how the 
characteristics of the whole population will alter through a random process 
called genetic drift. Probability lies at the very core of biological descriptions 
of mutation and evolution.

Genetics, the science of inheritance of traits and characteristics, is modeled 
probabilistically. This lecture discusses three probabilistic aspects: the 
Mendelian model of genetics, genetic drift, and mutation and evolution. 

The simple Mendelian model of dominant and recessive genes is the basic 
model of inheritance. For the sake of simplicity, we will use brown and 
blue eye color to illustrate this concept, and we will make the simplifying 
assumptions (though they are not true for real people) that a single gene 
determines eye color and that there are only two possible colors, blue and 
brown. The Mendelian model gives a probabilistic answer to the question: 
What traits will the offspring of two speci  c parents have? Different versions 



of a given gene are called alleles. In our example, these would be brown (B) 
and blue (b). People will have BB alleles, Bb alleles, or bb alleles. Each 
parent contributes one allele for a given gene, either B or b. If either of the 
alleles in the offspring is the dominant type (B), its trait will be expressed. 
Otherwise, the recessive trait (b) is expressed. Therefore, the probability 
of the recessive trait (b) being expressed is 1/4

 
if both parents carry one 

recessive allele, as shown in the chart that follows.

Parent B b
B BB Bb
b Bb bb

The chart below shows the percentage breakdown of the offspring (in the 
shaded area) if we imagine that 60% of the alleles in the parent population 
are for brown eyes and 40% are for blue eyes.

Parent 
Alleles

B 
60%

b 
40%

B BB Bb
60% 36% 24%
b Bb bb
40% 24% 16%

If we imagine a representative population of 100 offspring, each with two 
alleles (BB, Bb, or bb), note that the proportion of brown to blue alleles 
has not changed from the original: 36B + 36B + 24B + 24B = 120 B alleles 
(60% of 200) 24b + 24b + 16b +16b= 80 b alleles (40% of 200). The Hardy-
Weinberg equilibrium theorem shows that even if you have a recessive 
characteristic, it will not disappear. Instead, there is a stable percentage that 
remains as generations pass. The Hardy-Weinberg equilibrium theorem 
applies to recessive disorders as long as those disorders do not have an 
impact on reproductive success.
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Probability plays a central role in viewing genetics over the time scale of 
tens of thousands of years. Genetic drift alters the percentage of alleles 
that are dominant for a given trait. By random chance, the percentage of 
dominant alleles in the next generation is different. The expected value 
of the percentage in the next generation is the same as the percentage in 
the present generation. But the actual percentage is often a bit different by 
chance, as our simulations show. This changing percentage is called genetic 
drift, and it can be modeled using the idea of a random walk. Genetic drift 
is most prominent when the population is small. It happens much more 
slowly in larger populations. All of this assumes that no natural selection 
is going on that affects the proportion of the allele. In other words, no trait 
has an advantage in the number of offspring that 
a person with that trait can reproduce. If such an 
advantage exists—for example, if each blue-eyed 
parent has an extra child, that selective advantage 
quickly takes over.

Another way that genetic material changes is 
through mutations. A mutation is a stable change 
in the genetic material, brought about by various 
means, transmitted to offspring. Mutations to 
nonessential portions of the DNA are useful 
for measuring time (the molecular clock). It is assumed that mutations to 
nonessential aspects occur with a uniform probability per unit of time in a 
particular portion of the DNA. If P is the probability that a single segment of 
nonessential DNA has no mutations in a year, then PY is the probability of no 
mutations in a segment of DNA happening over Y years. On the average, if 
you have two individuals who had a common ancestor many generations ago, 
you would expect them to have about the same percentage PY of segments of 
nonessential DNA that had no mutations. Assuming that mutations are so 
rare that it is very unlikely that a mutation in the same segment has occurred 
in the two individuals, the percentage of segments that are mutated in one or 
the other is, on average, 2(1 – PY). This is an estimate of the percentage of 
segments that would be found different if comparing two individuals with 
a common ancestor Y years ago. Using this kind of probabilistic inference, 
we can estimate that the most recent common female ancestor of all living 
humans lived about 150,000 years ago.

The simple 
Mendelian model 
of dominant and 
recessive genes 
is the basic model 
of inheritance.
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Let’s look at a hypothetical situation that has a probabilistic aspect: universal 
HIV testing. About 1% of the time, HIV tests give a false-positive result. 
Of those who have HIV, their tests will come out positive 95% of the time. 
If someone has a positive result, what is the probability that that person has 
HIV? Let’s look at the numbers: Let’s say the population of the United States 
is about 300,000,000, of which about 500,000 people are HIV-positive. Of 
the 500,000 who actually have the disease, the test will come out positive 
95% of the time, which equals 475,000 cases. There are 299,500,000 (that 
is, 300,000,000 – 500,000) people who do not have the disease. Of the 
299,500,000 people who do not have the disease, the test will come out 
falsely positive 1% of the time, which equals 2,995,000 cases. Thus, the total 
number of people receiving a positive test result is: 475,000 + 2,995,000 = 
3,470,000. But of the 3,470,000 who get positive test results, only 475,000 
actually have the disease. Therefore, if you get a positive test result, your 
probability of having the disease is 475,000/3,470,000, which is less than 
15%. This is an example of a probabilistic anomaly that is an artifact of 
giving universal testing for a rare disease when the tests have a signi  cant 
possibility of giving false-positive results. 

Brian Charlesworth and Deborah Charlesworth, Evolution: A Very 
Short Introduction.

1. Assume that for some gene, there are more dominant alleles than 
recessive alleles in the current population. How can you reconcile 
the following facts: First, that the expected value for the percentage 
of a recessive allele in the next generation’s population is its current 
percentage, and second, the percentage of that allele is probabilistically 
expected to become only half as great as it is now or twice as great as it 
is now at some point in the future?

2. How could the rate of change in nonessential parts of DNA be used to 
disprove the theory of evolution if it were false?

    Suggested Reading

Questions to Consider
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Options and Our Financial Future
Lecture 7

Predicting the future prices of stocks can have a signi  cant impact on 
how we view our whole future  nancial security. The question is: How are 
we going to model the behavior of stocks or other  nancial instruments 
so that we can have a guess as to whether or not our retirement fund is 
going to be adequate to keep us living in the lap of luxury?

We’ve already discussed several applications of probability to 
gambling, and it seems natural that probability theory would arise 
in an area where great gambles are made—Wall Street. Predicting 

the future prices of stocks can have a signi  cant impact on our view of our 
future  nancial security. Starting in 1900, a Frenchman, Louis Bachelier, 
devised the  rst model of stock prices that involved probability, which is 
fundamental to modern  nance. In this lecture, we will also discuss options 
contracts, which are fundamental to modern  nance. In fact, more money is 
traded in options than in stocks.

Simply put, an option contract is an agreement between two people that gives 
one the right to buy or sell a stock at some future date for some preset price. 
Options are used as speculation, as well as a way to hedge risk, but it is a 
challenge to derive a rational price for such a contract. For quite some time, 
option pricing was viewed as a form of gambling. After the Black-Scholes 
theory was developed, the option price was viewed as an investment. As we 
will see from the example of Long-Term Capital Management, however, the 
application of sophisticated probability theory is not without its risks.

The world of  nance is full of uncertainty, as is the world of gambling. 
Among many other  nancial issues, the future prices of stocks and options 
are de  nitely uncertain. If we want to evaluate whether our retirement fund 
is adequate, we need to consider what might happen to our investments 
and their values. We can take our  nancial portfolio and run probabilistic 
simulations. The probabilistic factors might include in  ation or world events. 
Decisions about how much people are willing to pay for stocks are human 
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decisions that are not predictable. Randomness and probability play central 
roles in the determination of what our  nancial future is going to be.

How are prices of stocks or options modeled by  nancial mathematicians? 
The model Bachelier devised was basically a starting price plus a random 
walk. In this model, the price varies purely randomly from its current price 
with equal likelihood of going upward or downward; underlying trends do not 
appear in the model. In reality, there may be some reason to believe that an 
asset will increase in value. For example, consider a cattle ranch that has lots 
of food and today has a small herd of cattle. We expect growth. The value of 
that asset will rise. Other assets, such as heating 
oil and corn, have cyclical trends. More robust, 
sophisticated models of future stock prices were 
developed that include a drift component. One 
model (Samuelson, 1960) incorporates three 
components: today’s price, plus a function 
that relates to how the stock price is expected 
to change (the drift), plus a random walk 
feature (volatility).

An option is a contract that gives the holder of 
the option certain speci  ed rights. This might be 
the right to buy or sell a security or a commodity 
at a speci  ed price on a speci  ed future date. 
We will talk about the simplest kind of options, namely, a piece of paper 
that says I can buy one share of XYZ stock on April 30 for $100, even if at 
that time, XYZ is trading for a higher price. The possibility that XYZ will be 
worth more than $100 is what gives the option its value. If XYZ is trading 
for less than $100 at that time, the option is worthless. Options can be used 
as speculation and as a method to hedge risks. Options used as speculation: 
If I contract the right to buy stock at a future time at $100, I am betting that 
the stock will actually exceed that price, so I can resell it at a pro  t. Options 
used as a hedge against risks: Let’s say I need copper for my business. I have 
a business plan, and I know I need a certain amount of copper at a certain 
price. I can buy an option to ensure that, at a future time, I can buy copper at 
today’s price.

If we want to 
evaluate whether 
our retirement fund 
is adequate, we 
need to consider 
what might happen 
to our investments 
and their values.
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How much should someone pay for an option? The idea of  nding a 
rational price for options was developed in the late 1960s and early 1970s 
and allowed the options market to be created. Let’s take an example: I have 
bought an option that states that if XYZ stock, which now sells for $87, 
gets to $100 in the future, you pay me $1. To determine how much I should 
pay to acquire that option, we can work out an expected-value analysis: If 
I believe the probability of the stock reaching $100 is 90%, then the option 
would be worth 90 cents. But someone else might feel that the option would 
be worth only 50 cents. The rational price is one that enables the seller of the 
option to eliminate the risk and to ensure that he has the resources to pay out 
the $1 if the stock reaches $100. If another person buys 1/100

 
share today, 

then he owns 1/100 of the stock. And if the share reaches $100, the seller 
of the option can pay the $1 by selling the 1/100 share. Thus, the rational 
price for the option is the cost of 1/100 share of our $87 XYZ stock today, 
or 87 cents. 

Let us look at another example: Suppose an option is associated with a 
stock that today is selling for $100 per share, and we are talking about the 
option to buy a share at $100 one month from today. We make a simplifying 
assumption: The price will be either $110 or $95 one month from today. This 
concept of looking at a  nite collection of possible future values at discrete 
moments of time is called the Cox, Ross, and Rubenstein (CRR) tree. The 
CRR tree can be used to price options. Here, we try to replicate the risk 
of the option. We are going to buy a certain number of shares of stock and 
have a certain (negative) amount of cash in our portfolio. The value of our 
portfolio will be equal to the value of the option in one month’s time. In 
other words, we are trying to quantify the risk itself. 

Here’s the math: 

 x = number of shares in the portfolio
 d = amount of cash in the portfolio
 If the price goes to $110, the option is worth $10.
 If the price goes to $95, the option is worth $0.
 110x + d = 10  95x + d = 0 
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Our solution is:

x = 2
3

and d = $–63 1
3

. 

In other words, a portfolio containing 2/3share and owing $63.33 will have 
the same value as the option one month from now. Thus, the rational value of 
the option is the cost of 2/3 share ($66.67) minus $63.33, or $3.33.

This type of analysis leads to the Black-Scholes model. Before the Black-
Scholes model, these contracts were viewed as a pure gamble. The main 
result of the Black-Scholes theory is that the option price can be viewed as 
an investment, which led to the establishment of trading houses, such as the 
Chicago Board Options Exchange, created in 1973.

The application of sophisticated probability theory is, however, not without 
its risks. In 1994, the hedge fund Long-Term Capital Management (LTCM) 
began its historic money-making run, using advanced mathematics from 
top mathematicians. The man in charge was John Meriwether, a legendary 
head of bond trading of Salomon Brothers in the 1980s. He brought Myron 
Scholes and Robert Merton to serve on the Board of directors of LTCM. 
They later won the Nobel Prize in Economics for their work on options 
pricing. LTCM used complicated mathematical strategies and sophisticated 
models to trade bond products. In its  rst three years, to take full advantage 
of the bond mispricings their models found, LTCM borrowed heavily. In 
1998, LTCM collapsed. The Federal Reserve Bank of New York arranged a 
bailout of several billion dollars by 14 investment banks. 

Roger Lowenstein, When Genius Failed.

    Suggested Reading
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1. Why do the prices of a given stock go down as well as up even when the 
company is doing well?

2. The future prices of stocks are uncertain. What option and stock portfolio 
could you purchase to guarantee that you will not lose more money than 
the price of the option even if the stock price falls dramatically, yet you 
still reap the bene  ts of substantial gains in the price of the stock? This 
is an example in which options are used to hedge against stock decline.

    Questions to Consider
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Probability Where We Don’t Expect It
Lecture 8

[I]n today’s lecture we’re going to talk about  nding probability in 
unexpected places—places where you wouldn’t expect probability to 
play a role at all.

Sometimes, probability is centrally involved in solving problems that 
seem to have no random or probabilistic component to them at all. 
In mathematics, an example occurs in some methods of determining 

whether a number is prime or not. Any number is either prime or it’s not—
there is no randomness involved—yet probabilistic methods can essentially 
determine whether a number is prime even when the number is far too large 
for any computer to factor. Randomness and probability are involved in 
psychology when talking about conditioned behavior. Pigeons rewarded 
randomly rather than on any  xed pattern will retain their training longest. 
Strategic decision-making, or game theory, 
often  nds that optimal strategies involve 
taking one action or another with a certain 
probability rather than  nding one best move. 
Optimal business strategies or sports strategies 
often are probabilistic rather than deterministic. 
Probability pops up in many unlikely places.

In this lecture, we will talk about  nding 
probability in unexpected places. We start with 
the world of math. Probability can be used to 
determine to any desired degree of certainty the 
primality of a natural number with hundreds 
of digits. Whether a positive whole number is prime (that is, whether the 
number is not the product of natural numbers smaller than itself) is clearly 
not a question with any random or undeterministic feature, yet a method of 
determining whether it is prime uses randomness and probability. 

Probability can be 
used to determine 
to any desired 
degree of certainty 
the primality of a 
natural number with 
hundreds of digits.
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One way to see if a number is prime is to try to divide into it all smaller 
numbers. Here is an example of this method of determining that the number 
91 is not prime.

Divide 91 by Get remainder of
2 1
3 1
4 3
5 1
6 1
7 0

When we arrive at 7, we see that 91 divided by 7 is 13, with no remainder; 
thus, 91 is not prime. This strategy, however, would be impossible to use 
for longer numbers, even with today’s computers. The method is effective 
even when it might be impossible to determine whether or not the number is 
prime in any known deterministic way. 

Another strategy for determining if a number is prime uses Fermat’s little 
theorem: Start with a number that is prime, take any number less than that 
number and raise it to the power of 1 less than the prime, then divide by the 
prime; you get a remainder of 1. This remainder formula is written n p–1  1 
mod p. For example, if you start with the prime number 5, then you take any 
number less than 5 (for example, 2) and raise it to the fourth power (5 – 1), 
you get 16, and 16/5

 
 = 3, with a remainder of 1. Likewise, if you start with 

the prime number 5, then you take 3 (instead of 2) and raise it to the fourth 
power (5 – 1), you get 81, and 81/5 = 16, with a remainder of 1. If you start 
with the prime number 5, then you take 4 (instead of 2) and raise it to the 
fourth power, you get 256, and 256/5 = 51, with a remainder of 1.

Let’s take a different prime, 7. If we choose 2 as the smaller number, then 
we  nd 26 is 64, and 64/7 = 9, with a remainder of 1. No matter what smaller 
number we choose, we always have a remainder of 1.
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This theorem then gives us a way to see if a number is not prime. For 
example, we can prove 9 is not prime: 

 28= 256

  256
9

= 28, with a remainder of 4

Because the remainder is not 1, 9 is not prime. In addition, there is 
a computational simpli  cation using just remainders that speeds up 
the calculation. We can also use this theorem to test if a huge number is 
not prime. 

The question must be asked, though: Even if we use the number 2, how do 
we raise it to the required power and  nd the remainder after dividing? For 
large values of p, 2p – 1 mod p can be cleverly computed by simplifying:

 2 × 2 = 22

 22 × 22 =24

 24 × 24 =28

 28 × 28 =216

 216 × 216 =232, etc.

If p has 300 digits, it takes only on the order of 1000 such doublings to 
calculate 2p – 1 mod p. This is a probabilistic test, however, because some 
numbers fool it. For example, 341 is a product of 11 31, yet 2340 divided 
by 341 does give a remainder of 1. However, for a randomly chosen 13-digit 
number, there is a 99.9999985% chance that a number that satis  es this test 
is prime. Of the 308,457,624,821 thirteen-digit primes, only 132,640 will 
fool this test!

Probability arises in game theory. Game theory is the mathematical model of 
strategic decision-making. It is used in economics, business, games, sports, 
war, and other areas where strategic decisions must be made. Game theory 
uses the concept of a payoff matrix, which describes the payoffs for each 
player for each combination of options that the players could choose.
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We will study game theory as it applies to football. In football, on the third 
down with many yards to go for a  rst down, the usual options are a pass 
play or a run play. The defending team, then, can defend against the pass 
or defend against the run. Below is a possible payoff matrix. Each number 
represents expected yards gained by the offense. The defensive payoffs are 
understood to be the negative of the numbers:

Defense Options
Defend against pass Defend against run

Offense 
Options

Pass 5 7
Run 6 1

If the offense always passes, the defense will learn to always defend against 
the pass. That combination gives an expected value of 5 yards for the offense. 
But if the offense always runs, the defense will learn to always defend against 
the run. That combination gives 1 for the offense. Game theory con  rms that 
once in a while, at random, making the unobvious play is the best long-run 
strategy. According to our calculations, the expected number of yards gained 
if the offense passes with probability p and the defense defends against the 
pass is p × 5 + (1 – p) × 6. The expected number of yards gained if the 
offense passes with probability p and the defense defends against the run is: 
p × 7 + (1 – p) × 1. Our probability of passing is a max/min strategy: 

 p × 5 + (1 – p) × 6 = p × 7 + (1 – p) × 1. 

Our conclusion is that the offense should pass 71% of the time (randomly). 
That combination gives an expected value of 5.3 for the offense, which is a 
higher value than either of the two pure strategies. Likewise, using the payoff 
matrix  gures again, we  nd that the defense should defend against the pass 
86% of the time (randomly). This is called a Nash equilibrium, that is, a 
strategy whereby no player can get an advantage by unilaterally changing 
strategy. It was named for John Nash, who won the Nobel Prize for his work 
on game theory.
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Let’s turn now to risk management in business, studying how a large NASA 
project estimates its budget. The project lists all the risks that might incur 
a cost, with an estimate of both the possible cost and the probability of 
occurrence. The expected value is the probability of occurrence times the 
cost. As risks are retired or reevaluated or as new risks are added to the list, 
the expected value is recomputed. In this way, the project can estimate how 
much money it should keep in reserve.

Psychologists have learned that randomness can play a valuable role in 
reinforcing a desired behavior. Giving rewards is an ingredient in training 
an animal, for instance, a pigeon, to behave in a desired way. The question 
is, how frequently should you reward the instances of the desired behavior 
in order to have the conditioning last the longest? If you give a reward 
for a certain behavior (pecking) every time, at  rst the pigeon learns but 
quits rather soon when the reward ceases to appear. The best strategy is to 
randomly reinforce the behavior. Changing the frequency of rewards in an 
unpredictable, random way leads to behaviors that are retained for long 
periods even in the absence of rewards. Applied to humans, this observation 
may help explain the compulsiveness of some gamblers. 

Edward B. Burger and Michael Starbird, The Heart of Mathematics: An 
invitation to effective thinking, 2nd ed.

Oskar Morgenstern and John von Neumann, Theory of Games and Economic 
Behavior (commemorative edition).

    Suggested Reading
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1. Here is a payoff matrix in which each player is a driver who can choose 
to drive on the right or on the left of the street.

Drive on right Drive on left
Drive on right 70, 70 –100, –100
Drive on left –100, –100 70, 70

The value (by some measure) is 70 for each player if the two agree to 
drive on the same side of the street, thus avoiding a crash when going in 
opposite directions. The value is –100 if they choose different sides and, 
thus, crash. What are the Nash equilibriums for this payoff matrix?

2. Can you think of an example in your own life where random 
reinforcement has had a lasting impact on your behavior or attitudes?

    Questions to Consider
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Probability Surprises
Lecture 9

No course on probability could possibly be complete without a discussion 
of two of the most famous examples of counterintuitive probabilistic 
scenarios. The  rst one we’re going to do is the birthday problem, and 
then we’re going to do the Let’s Make a Deal® Monty Hall question.

Probability is full of surprises. The birthday problem is a famously 
counterintuitive result; namely, if 50 random people are in a room, 
there is a 97% chance that at least two of them have the same 

birthday. The analysis of that probability illustrates strategies of combining 
probabilities. This counterintuitive result can be con  rmed by looking at 
various groups of people, such as presidents of the United States or Oscar 
winners, and  nding birthday coincidences as predicted. The Monty Hall 
problem is equally baf  ing to most of us. It is a challenge for all of us to 
hone our sense of probability so that our intuition more closely accords with 
reality. Tricky probability problems arise in issues from birthdays to game 
shows to tennis to choosing socks from a drawer!

Let’s start this lecture with the famous birthday problem, mandatory for any 
probability course. If 50 random people are in a room, what is the probability 
that two of them will have the same birthday? In fact, the surprising answer 
is that there is a 97% chance that two of them will have the same birthday. It 
is easier to compute the probability that all 50 birthdays are different. 

To compute the probability that all the people have different birthdays, you 
would multiply as follows:

365 364 363 319 318 317 ... 0.03
366 366 366 366 366 366

The product of all the fractions is about 0.03. Thus, the probability that no 
two people have the same birthday is only about 3%. Hence, the chance that 
at least two people do have the same birthday is about 97%. 
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The surprisingly high probability for birthday coincidences can be 
tested in reality by looking at some collections of about 50 people. Of 
the  rst 42 different presidents, one pair has the same birthday: Polk and 
Harding: November 2 (1795, 1865). One pair and one triple of presidents 
have the same death day: Fillmore and Taft: March 8 (1874, 1930); 
J. Adams, Jefferson, Monroe: July 4 (1826, 1826, 1831). Of the  rst 46 
vice presidents, three share a birthday: Hannibal Hamlin: August 27, 1809; 
Charles G. Dawes: August 27, 1865; and Lyndon B. Johnson: August 27, 
1908. Of the Oscar winners for best actor, two have the same birthday: Ben 
Kingsley, who won in 1983: December 31, 1943; and Anthony Hopkins, 
who won in 1992: December 31, 1937. Two winners have the same death 
day: Humphrey Bogart, who won in 1952: January 14, 1957; and Peter 
Finch, who won posthumously in 1977: January 14, 1977. If you have 90 

random people in a room, chances are .999993 
that at least two will have the same birthday. 
And if you have only 23 people in the room, the 
chances are even that at least two will have the 
same birthday.

Another famously non-intuitive problem is the 
Monty Hall problem from the TV show Let’s 
Make a Deal®. Here is how it works: A contestant 
in a game show gets to pick one of three doors 
and keep whatever prize is behind the door. One 

of the doors has a desirable prize; the two others don’t. At this stage, no 
matter what door the contestant chooses, the probability is 1/3 that she will 
pick the door with the desirable prize. Having announced her choice, but 
before the door is opened to disclose the prize, Monty Hall, the host of the 
game show, opens one of the two doors she did not choose, revealing an 
undesirable prize, and offers her the chance to change her choice. Should 
she change? Yes, she should change: The probability that her original choice 
is the desirable prize is only 1/3, while the probability is 2/3 that the other 
unopened door has the good prize. The validity of the above answer assumes 
that the host knows which door conceals the desirable prize and never 
opens it.

If you have 90 
random people in 
a room, chances 
are .999993 that at 
least two will have 
the same birthday.
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Here is a variation on the Monty Hall problem. If there are 1,000,000 doors, 
the contestant’s initial guess has a 1/1,000,000 chance of being right and 
a 999,999/1,000,000 chance of being wrong. Let’s say Monty Hall opens 
999,998 other doors and leaves one closed besides the one the contestant 
selected. The probability is 999,999/1,000,000 that the prize is behind the 
other remaining closed door, so the contestant should de  nitely switch. And 
here is another variation of the Monty Hall problem: Let’s say there are  ve 
doors; the contestant’s initial guess has a 4/5 chance of being wrong. Suppose 
Monty Hall then opens two of the losing doors and offers the contestant the 
chance to pick one of the other two remaining closed doors. The probability 
is 4/5 that the prize is behind one of the two closed doors other than the door 
originally selected. Switching to one of the other doors gives the contestant 
a 2/5 chance of winning, while sticking with the original choice gives her a 
1/5 chance.

Our next example is a problem from tennis: If the score in a tennis game 
gets to deuce, what is the probability of the server winning the game? Deuce 
occurs when the game is tied and one player has to get ahead by two points to 
win. It appears that this is an in  nite problem because there is no theoretical 
limit to the number of deuces in a game. In fact, this problem can be resolved 
by a clever strategy. Suppose the server has a 0.6 probability of winning each 
point and the receiver, a probability of 0.4 of winning. The probability of 
the server winning the next two points is 0.6 × 0.6 = 0.36. The probability 
of returning to deuce is 0.6 × 0.4 + 0.4 × 0.6 = 0.48. Let p be the probability 
that the server eventually wins. Either the server could win in two points 
(0.36) or the game could return to deuce (0.48), followed by the server’s 
eventually winning. We get the following equation: p = 0.36 + 0.48p. Solving 
the equation, we see that the server will win with a 0.69 probability.

Here is a  nal problem to ponder: Suppose you have three sock drawers. In 
one drawer, you have two blue socks. In a second drawer, you have two red 
socks. In a third drawer, you have one red and one blue sock. You randomly 
choose a drawer, reach in, and pick out a sock without looking. You see it 
is red. What is the probability that the other sock in the drawer is also red? 
Answer: You are equally likely to have chosen any one of the three red socks. 
For two of them, the other sock is red; for the third, the other sock is blue. 
Thus, the probability of the other sock being red is 2/3. 
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Edward B. Burger and Michael Starbird, Coincidences, Chaos, and All That 
Math Jazz: Making Light of Weighty Ideas.

———, The Heart of Mathematics: An invitation to effective thinking, 
2nd ed.

1. Suppose I am in a room with 49 other people. What is the probability 
that someone in the room has the same birthday as I do? Hint: This 
question requires a different calculation from the one presented in the 
lecture. To see why, suppose that my birthday is, for example, July 10.

2. Suppose in the Let’s Make a Deal® show that Monty Hall did not know 
the location of the big prize, and he sometimes would open the big prize 
door by accident. Now analyze the situation in which the contestant 
selects a door, Monty Hall opens another door, and it happens to reveal a 
worthless prize. Is the contestant better off switching, or in this case, are 
the probabilities for switching and sticking the same?

    Suggested Reading

    Questions to Consider
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Conundrums of Conditional Probability
Lecture 10

In this lecture we’re going to introduce a very basic concept of 
probability that’s associated with what happens when we’re asked 
a probabilistic question, but then we’re given more information. It 
changes the probability because we put ourselves in a more restricted 
arena of possibilities.

An important concept used to help us  nd our way through probabilistic 
complexity is the idea of conditional probability. Conditional 
probability refers to a situation in which we begin with a clear 

probabilistic scenario but are then told more information. The additional 
information alters the probabilities, but frequently, the change is challenging 
to analyze. Principles of dealing correctly with conditional probability can 
guide us to correct answers, but these are tricky and highly non-intuitive 
issues. The famous Bayes’ theorem describes the relationships among related 
conditional probabilities. The ideas of conditional probability are introduced 
via some probabilistic conundrums that delightfully puzzle us.

To introduce conditional probability, we will consider a collection of 27 cards 
that have been chosen to illustrate the idea. There are 21 black cards, of which 
9 are face cards, and 6 red cards, of which 3 are face cards. We can answer 
questions about the probability of choosing a certain type of card from this 
group of cards. What is the probability of choosing a face card? Because we 
have 12 face cards, the answer is 12/27. What is the probability of choosing 
a red card? Because we have 6 red cards, the answer is 6/27. Conditional 
probability enters the picture when we are told one of the characteristics that 
cuts down the population. For example, what is the probability of getting a 
red card given that we have chosen a face card? There are 3 red cards out of 
the total 12 face cards; thus, the conditional probability of choosing a red 
card given that we have chosen a face card is 3/12.

Let’s look at another question that relates two different conditional 
probabilities. What is the probability of getting a face card that is red? This 
question involves two probabilities: the probability of choosing a face card 
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and the conditional probability of choosing a red card given that we have 
a face card. The answer is the product of two probabilities: the probability 
of choosing a face card from among 27 cards 12/27 times the conditional 
probability of choosing a red card given that we have a face card 3/12, or 
(12/27) × (3/12) = 1/9. We can look at the same situation backward. What is 
the probability of getting a red card that is a face card? The analysis is the 
same: the probability of choosing a red card from among 27 cards 6/27 times 
the conditional probability of choosing a face card given that we have a red 
card 3/6, or (6/27) × (3/6) = 1/9.

Bayes’ theorem is a principal tool that is used to deal with conditional 
probability. Suppose A represents one characteristic (such as “red card”) and 
B represents another characteristic (such as “face card”). Bayes’ theorem 
relates two conditional probabilities, the probability of A given B and the 
probability of B given A. It can be presented in two ways: 

 P[B] × P[A|B] = P[A] × P[B|A] or P[A|B] = (P[B|A]P[A])/P[B]

Conditional probability can surprise us. Consider the following scenario: 
Suppose you meet a man and learn that he has exactly two children. Suppose 
that you learn that his older child is a boy. Therefore, we know that two of 
four possibilities are eliminated (two girls [GG] or an older girl and a younger 
boy [GB]), leaving the possibility that he has two boys (BB) or an older boy 
and a younger girl (BG). Of the remaining two equally likely possibilities, 
one is boy-boy. Thus, the probability that both children are boys given that 
the older child is a boy is 1/2. 

This is called conditional probability. But suppose you ask the man 
instead, “Do you have a son?” and he answers, “Yes.” The GG possibility 
is eliminated, and three possibilities remain, GB, BG, and BB. Thus, 
the probability that both of his children are boys given the knowledge 
(or “condition”) that at least one is a boy is 1/3. Notice that the answer is 
not 1/2. The information that at least one child is a boy affects the probability 
differently than the information that the older child is a boy. Suppose you had 
asked the following question of the man instead: “Do you have a son who was 
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born on a Tuesday?” and he answers, “Yes.” Most people’s intuition is that 
this birthday information is irrelevant and should yield the same probability 
as the previous version of the problem. To do this calculation, we begin by 
writing down all the possible day-of-the week and gender combinations, and 
we  nd that there are 196 in all. We then narrow down the possibilities by 
focusing on the pairs for which at least one child is a boy born on a Tuesday. 
We  nd we have 13 BB possibilities, 7 BG possibilities, 7 GB possibilities, 
and of course, no GG possibilities, for a total of 27. The probability that both 
children are boys given that at least one is a boy 
born on a Tuesday is 13/27, which is between 
1/3 and 1/2.

Let’s look at another problem: Suppose we have 
two urns, each containing 10 balls. In one urn, 
we have 7 blue and 3 red balls, and in the other, 
we have 3 blue and 7 red balls. We can’t tell 
which urn is which. I select an urn at random 
and draw a red ball from it; then I put the ball 
back in the urn and choose a ball again from the 
same urn, and it is red. I choose a third time and 
get a red ball and a fourth time and get a red ball. What is the probability 
that the urn I chose was the one with 7 red and 3 blue balls? One strategy 
might be to imagine having 20,000 people performing the same experiment, 
randomly choosing one of the two urns and randomly drawing out 1 of the 
10 balls four different times. Logically, about half the people (10,000) would 
choose the blue-heavy urn and half, the red-heavy urn. 

Out of the 10,000 people who chose the red-heavy urn, how many would we 
expect to choose red balls four times in a row? Each of the four times one 
of the people reaches into the red-heavy urn, he or she has a 70% chance of 
getting a red ball. Therefore, we arrive at this equation: 0.7 × 0.7 × 0.7 × 0.7 
= 0.2401, or 2401 of the 10,000 people. However, for the blue-heavy urn, 
people have only a 30% chance of getting a red ball each of the four times a 
ball is chosen. The equation is: 0.3 × 0.3 × 0.3 × 0.3 = 0.0081, or 81 of the 
10,000 people. We know, then, that 2482 people would draw four red balls. 
Therefore, the probability that the person choosing four reds is drawing from 
the red-heavy urn is 2401/2482, or 97%. 

As our knowledge 
and information 
about possibilities 
in a situation 
change, the 
probabilities of 
events change.
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Let’s change the scenario a little and draw a ball out of an urn 50 times 
instead of 4 times. Let’s say we  nd that 27 times, we choose a red ball, and 
23 times, we choose blue. What is the probability that we are choosing from 
the red-heavy urn? Surprisingly, our calculations show us that the probability 
is again 97%! 

Edward B. Burger and Michael Starbird, The Heart of Mathematics: An 
invitation to effective thinking, 2nd ed.

Peter G. Moore, The Business of Risk.

Jeffrey S. Rosenthal, Struck by Lightning: The Curious World 
of Probabilities.

1. Someone tells you the following: “I met a man who told me that he has 
exactly two children. I asked him one question, but I can’t remember 
what question I asked. It was either ‘Is your older child a boy?’ or ‘Is 
your younger child a boy?’ I remember that he answered yes.” What is 
the probability that both of the man’s children are boys?

2. Suppose you have two urns, one of which contains 10 red balls and the 
other, 5 red balls and 5 blue balls. You select an urn at random and draw 
a red ball from it; then you put the ball back in the urn and choose a ball 
again from the same urn, and it is red. You choose a third time and get a 
red ball and a fourth time and get a red ball. What is the probability that 
you are reaching into the red urn?

    Suggested Reading

    Questions to Consider
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Believe It or Not—Bayesian Probability
Lecture 11

[T]his basic view of probability is called the frequentist probability, 
because it’s talking about the frequency with which a repeated event 
happens. But there’s another sense in which we often think in terms of 
probability that measures really a quite different kind of phenomenon, 
and so we sometimes wish to use probability to express in some sort of a 
quantitative way the degree to which we believe something.

What does probability mean in the real world? Probabilists do not 
agree. Mostly in these lectures, we’ve focused on the frequentist 
view of probability; namely, that if we repeat an experiment in 

question many times, the percentage of successful outcomes is the probability. 
However, another view of probability is that it measures a person’s belief 
in the likelihood of the item in question. “Did Shakespeare write Hamlet?” 
We can’t do a repeatable experiment pertinent to this question. A frequentist 
holds the view that probability applies only to experiments whose outcomes 
are random and, therefore, would not discuss the Hamlet question as one 
susceptible to probabilistic comment. Bayesian probability concerns 
itself with describing a weighted assessment of 
possibilities, then develops a method for revising 
that assessment as more evidence is amassed. 
The different views of probability are intriguing 
to consider, and in some cases, adopting one 
philosophy or another has practical implications.

In most of the examples in earlier lectures, 
probability could be interpreted as the fraction 
of successes in a series of identical experiments 
or trials. An example would be saying that the 
probability of rolling a die and coming up with a four is 1/6. That is, if you 
rolled the die many times, about 1/6 of those times would show four. This 
view of probability is called frequentist probability.

Another use 
of probability 
is to express 
quantitatively our 
degree of belief in 
some statement.
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Another use of probability is to express quantitatively our degree of belief 
in some statement. For example, if I say that the probability is 98% that 
Shakespeare wrote Hamlet, you’ll know that I believe very strongly that 
Shakespeare was the one who indeed wrote Hamlet, but that there is some 
small possibility that someone else was the actual author of the play. Saying 
that we believe there is 98% probability that Shakespeare wrote Hamlet 
makes a statement about the strength in our belief. But this does not mean 
that if 100 Shakespeares were born, 98 of them would have written Hamlet. 
We have two kinds of situations in which we use the same word—probability. 
As a measure of the strength of belief, probability expresses our uncertainty, 
but the two kinds of probability are different kinds of things.

When probability is used to express quantitatively a degree of belief, it must 
be clear what all the possibilities are. Among the various potential states 
of the world, we express the relative probabilities of those different states 
being the correct one. And we assign to each such possible state of the world 
a probability that that one is the correct one The sum of the probabilities 
is 100%.

To ground our discussion, let’s take an example of  sh in a stream. We’re 
interested in what fraction of  sh in the stream are trout, from the possibilities 
of 5%, 15%, 25%, …, 95%. Before any data are collected, we assume 
that we have no bias; we establish the 10 possibilities and give each the 
same probability.

Hypothesis: This percentage 
of  sh in the stream are trout Probability of this hypothesis

5% 0.10
15% 0.10
25% 0.10
35% 0.10
45% 0.10
55% 0.10
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Hypothesis: This percentage 
of  sh in the stream are trout Probability of this hypothesis

65% 0.10
75% 0.10
85% 0.10
95% 0.10

Suppose we catch three  sh—trout/trout/non-trout. We would naturally 
believe that it is more likely that the percentage of trout is high. We can 
update our probabilities for the various potential percentages of trout in a 
stream by doing a thought experiment in which we imagine 10,000,000 
 shermen—1,000,000  shing in each of 10 different universes (one for each 

hypothesis). We can calculate how many of those  shermen would catch a 
trout/trout/non-trout combination in their respective streams. The following 
table shows our calculations:

Hypothesis: If this 
percentage of  sh in the 

stream are trout

Then of 1,000,000  shermen, 
this many catch two trout 

and one non-trout
5% 2375
15% 19,125
25% 46,875
35% 79,625
45% 111,375
55% 136,125
65% 147,875
75% 140,625
85% 108,375
95% 45,125
Total 837,500 in all streams
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We can now update our belief system. Our a priori assumption, before 
catching any  sh, was that each hypothesis is equally likely. Then, we caught 
two trout, then one non-trout. We can now recalculate the probability that 
the stream contains 5% trout by dividing 2375 by 837,500. Likewise, we 
can recalculate the probability that it is a 15% stream by dividing 19,125 by 
837,500, and so forth. 

By applying Bayes’ theorem to make an update to our previous resulting 
distribution, we get a new distribution that has most of the probability 
concentrated in the choices 35%, 45%, 55%, 65%, and 75%. If we catch 
another trout and another non-trout, we can perform the same type of 
calculations using our new, updated distribution. Now we have evidence 
that changes our sense of the possibility; we have, for example, many more 
 shermen in the 65% stream than in the 5% stream. As we catch more  sh, 

the evidence will dominate over our initial estimate, thus re  ecting the Law 
of Large Numbers. After catching 100  sh, we have a very strong belief that 
we have a 65% stream, but about a 10% chance that it is a 55% stream or a 
10% chance that it is a 75% stream.

Thus, we have two views of probability. The frequentist probability is the 
view in which probability is de  ned in terms of long-run frequency or 
proportion in outcomes of repeated experiments. Bayesian probability is the 
view in which probability is interpreted as a measure of degree of belief. In 
this view, the concept of probability distribution is applied to a feature of a 
population to indicate one’s belief about possible values of that feature.

Let’s look at another example of updating our probability distribution in the 
 eld of medicine. A doctor narrows a patient’s illness to three possibilities: 

A, B, or C. After assessing the patient, the doctor assigns probabilities of 
the patient having the diseases as follows: A: 50%, B: 40%, C: 10%. After 
a more thorough exam, a symptom, S, is discovered, and the doctor knows 
what the probability is of a patient with each of the diseases exhibiting 
this symptom. 
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Therefore, we update our initial probability distribution:

Hypothesis: 
Patient has 
this disease

Probability 
of this 

hypothesis

Number of 
imagined 
patients1

Probability 
of showing S

Number 
of patients 
showing S2

Updated 
probability 

of this 
hypothesis

A 50% 5000 10% 500 500/2500 
= 20%

B 40% 4000 30% 1200 1200/2500 
= 48%

C 10% 1000 80% 800 800/2500 
= 32%

1Out of 10,000
2Note that the total is 2500.

We see that B is now the most probable disease, replacing disease A. 

Donald A. Berry, Statistics: A Bayesian Perspective.

E. T. Jaynes, Probability Theory: The Logic of Science.

1. Bayesian probability involves having an a priori distribution and 
updating it in light of evidence. What is the in  uence of different a priori 
beliefs after a great deal of evidence is accumulated? Why?

2. Suppose your a priori belief about a coin is that you are 100% certain 
that it will always land heads. You  ip the coin and it lands tails. Then 
you cannot update your probability distribution because you ascribed 0 
to the probability of ever getting a tail. What went wrong?

    Suggested Reading

    Questions to Consider
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Probability Everywhere
Lecture 12

In this lecture we’re going to follow a road that often leads to interesting 
ideas, and that is the road of trying to understand what appears to be 
a paradoxical kind of situation; and then in thinking it through, we 
develop an idea.

One of the strengths of mathematics is its strategy of generalizing 
and abstracting ideas. In the case of probability, we have mostly 
considered situations for which a  nite number of possible outcomes 

was possible for a given situation; then, we investigated issues of probability 
associated with that situation. The techniques we developed can be extended 
to situations in which in  nitely many outcomes are imagined as possible. 
The two envelopes problem and the St. Petersburg paradox each force us 
to confront new challenges that arise when in  nitely many outcomes 
are possible.

Probability is a fascinating study that has many real-world applications. It 
presents us with a rich  eld of intriguing inquiry that contains questions 
and insights that are mathematical, practical, and philosophical. Often, 
mathematical ideas are born by trying to tackle a speci  c problem. In thinking 
through how to deal with the speci  c problem, new ideas are created. 

Here is a conundrum known as the two envelopes problem: You are given 
two envelopes and told that each envelope contains a check for a certain 
amount of money, and one of the checks is for exactly twice as much money 
as the other. You randomly select one of the envelopes and open it. The 
enclosed check is for a certain amount of money, say d dollars. Now you can 
either keep that money, or you can take the contents of the other envelope. 
You know that you are as likely to have chosen the lesser amount as you are 
likely to have chosen the greater amount. But now you do an expected-value 
analysis and  nd a paradoxical situation. 
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There is a 0.5 probability that you have the higher amount and a 0.5 
probability that you have the lower amount; thus, the expected value of 
switching is:

 1 1 5(2 )
2 2 2 4 4

d dd d d . 

The result is greater than d, so this analysis seems to suggest that you should 
switch. But this makes no sense, because it is clearly as likely that you have 
the lower amount as the greater amount. What is wrong? The two envelopes 
problem brings up a situation we have not dealt with much, namely, one in 
which the experiment has in  nitely many possible outcomes. How can we 
revise our thinking to cope with in  nitely many alternatives? 

If any amount of money is possible, then there are in  nitely many possibilities 
theoretically. But in reality, huge numbers are not possible. Actually, we 
have an a priori sense—an expectation—of a probability distribution. We 
can hearken back to the Bayesian strategy and realize that we have an a 
priori sense of the probabilities of various amounts. Depending on our a 
priori beliefs, we are forced to confront reality and realize that we don’t 
have an in  nite number of possible amounts of money in the envelopes. 
We can describe the probabilities by a graph based on the expected-value 
analysis using the probabilities according to our a priori distribution. The 
expected-value analysis using the probability distribution that takes into 
account the in  nite number of possible outcomes will give us good guidance 
about whether to switch envelopes. In addition, we must point out that even 
when dealing with an in  nite number of possible outcomes, we must assign 
probabilities that total 1.

Another famous paradox involved with gambling is the St. Petersburg 
paradox. Suppose a gambler plays a coin-  ipping game, winning $2 for 
 ipping heads. If the gambler  ips tails, then heads, he wins $4. If the 

gambler  ips two tails in a row, then heads, he wins $8. If the gambler is 
very lucky, he might  ip  ve tails in a row, followed by heads, to win $64. 
How much would you pay to play this game? 
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We can calculate the expected value:

 1
2

2 1
4

4 1
8

8 1
16

16 ...  1 1 1 ...

The expected payout is in  nity, so it appears you should pay any amount of 
money to play this game. The paradox is that you would not make a great 
deal of money in this game. Simulations show that average payoffs are 
quite low.

Probability predictions are the basis of statistical inference. Statistical 
inferences boil down to comparing expectations from probability with 
collected data. If your expectation from probabilistic analysis differs greatly 
from what you see in the data, you can make the deduction that the concept 
you had about how the data were being produced must be wrong. Statistics 
is an important application of probability and is covered in The Teaching 
Company course Meaning from Data: Statistics Made Clear.

Probability is a fascinating  eld that plays a fundamental role in how we 
understand our world, from games to science to  nance. One recurring 
theme of the course was that randomness and probability often confront us 
with situations that are counterintuitive. Probability offers intriguing and 
sometimes subtle puzzles, such as the birthday problem, the Monty Hall 
Let’s Make a Deal® puzzle, and the two-boys puzzle. All these examples 
seem wrong, but when our intuition and reality are not in accord, one of 
them has to give, and it has to be our intuition. After we have adjusted our 
understanding to see the truth of these counterintuitive examples, then the 
probability results are ones that we can make reliable decisions on. 

Probability gives us a logically sound way of quantifying uncertainty. Many 
of the ideas about probability in this course were illustrated in the realm of 
gambling, because gambling games are fundamentally based on probability. 
Casinos count on probability to ensure their success. Casinos are the modern 
world’s testament to the Law of Large Numbers. Random behavior that 
results in regularity in the aggregate is a central feature of our serious, 
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scienti  c understanding and descriptions of nature. The directions and 
speeds of molecules are far too numerous to count and describe. Instead, we 
describe the interactions as the result of a probabilistic description of random 
motion, with appropriate constraints that describe the molecular behavior. 

The role of randomness is central to the science of genetics because the whole 
premise of the subject is that parts of the genetic material from each parent 
are randomly donated to the offspring. Of course, probability plays a central 
role in descriptions of our  nancial world 
and investments. Investments are viewed 
as having a probability of rising or falling. 
Devising an optimal portfolio involves 
optimizing the probability of success.

One of the fundamental sources of our 
uncertainty about the world is that often, we 
don’t know what is really true among several 
possibilities. When we sit on a jury, we may 
not know whether the accused is innocent or 
guilty. Instead, we have a sense that there is 
some likelihood of guilt and some likelihood 
of innocence. As evidence is adduced at the trial, our relative con  dence in 
guilt or innocence shifts. The strategy of Bayesian probability describes the 
relative strengths of our beliefs and how they are altered by evidence.

Randomness and uncertainty are fundamental parts of reality. Probability 
describes what we should expect from randomness. Probability is a basic 
tool for making sense of and coping with the reality of randomness and 
uncertainty in our world. 

Often, mathematical 
ideas are born by 
trying to tackle a 
speci  c problem. 
In thinking through 
how to deal with the 
speci  c problem, new 
ideas are created.
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Ivars Peterson, The Jungles of Randomness: A Mathematical Safari.

Sheldon Ross, A First Course in Probability.

1. Suppose in the St. Petersburg game, the rule was changed so that you 
received $64 as soon as you  ipped  ve tails in a row and the game then 
ended. How much should you pay to make it a fair game? Would you 
play such a game?

2. Some people believe that everything that happens in life happens for a 
reason. To what extent do you believe that the occurrences of everyday 
life are random?

    Questions to Consider

    Suggested Reading
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Timeline

1563................................................. Girolamo Cardan writes (but doesn’t 
publish) Liber de Ludo Aleae, a book 
on games of chance. He was the  rst to 
venture into studying probability.

1654................................................. Blaise Pascal and Pierre de Fermat, 
through a series of  ve letters, discuss 
probabilistic solutions to a number of 
mathematical questions raised in the 
analysis of dice games.

1655................................................. Christiaan Huygens publishes De 
Ratiociniis in Ludo Aleae, on the 
calculus of probabilities, the  rst printed 
work on the subject.

1689................................................. Jacob Bernoulli publishes the concept 
of the Law of Large Numbers, a 
mathematical statement of the fact that 
when an experiment is repeated a large 
number of times, the relative frequency 
with which an event occurs will equal 
the probability of the event.

1713................................................. Nicholas Bernoulli edits and 
publishes Ars Conjectandi (The Art of 
Conjecture), written by his uncle, Jacob 
Bernoulli, in which the work of others 
in the  eld of probability is reviewed 
and thoughts on what probability really 
is are presented.
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1728................................................. Sir Isaac Newton publishes The 
Chronology of Ancient Kingdoms 
Amended, in which he gives a 65% 
con  dence interval for the length of a 
king’s reign.

1733................................................. Abraham de Moivre publishes an 
account of the normal approximation 
for the binomial distribution for a 
large number of trials. This improves 
upon Jacob Bernoulli’s Law of Large 
Numbers. This account will be included 
in the 1756 edition of De Moivre’s 
The Doctrine of Chances, a treatise on 
probability  rst published in 1718.

1738................................................. Daniel Bernoulli publishes Exposition 
of a New Theory on the Measurement of 
Risk, an early look at probability theory 
and economic decision making.

1820................................................. Pierre-Simon Marquis de Laplace 
publishes a seminal work on probability.

1827................................................. Robert Brown, a botanist, while 
observing the motion of pollen grains, 
hypothesizes underlying mechanics 
for erratic movements. This later led 
Bachelier and Einstein to study and 
make rigorous Brown’s work. The 
mechanics are now known as Brownian 
motion in his honor.

1837................................................. Simeon Denis Poisson publishes 
Recherches sur la probabilité des 
jugements en matière criminelle et 
matière civile, which introduces the 
expression Law of Large Numbers 
and in which the Poisson distribution 
 rst appears. 
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1853................................................. Augustin-Louis Cauchy presents 
an outline of the  rst rigorous proof 
of the central limit theorem, which 
is a generalization of the Law of 
Large Numbers. 

1867................................................. Pafnutii Lvovich Chebyshev 
publishes a paper, On Mean Values, 
which uses Irenée-Jules Bienaymé’s 
inequality to give a generalized Law 
of Large Numbers.

1887................................................. Pafnutii Lvovich Chebyshev 
publishes On Two Theorems, 
which gives the basis for applying 
the theory of probability to statistical 
data, generalizing the central limit 
theorem of de Moivre and Laplace. 

1900................................................. Louis Bachelier publishes the  rst 
mathematical approach to Brownian 
motion in his Ph.D. thesis, Théorie 
de la Spéculation.

1905................................................. Einstein publishes three groundbreaking 
scienti  c papers. The third and least 
famous of the three (the  rst won the 
Nobel Prize for Physics and the second 
was on special relativity) detailed a 
mathematical treatment of 
Brownian motion.

1919................................................. Paul Levy delivers three lectures at 
the École Polytechnique, highlighting 
entirely new areas of research in 
probability theory.

1938................................................. Kolmogorov publishes the in  uential 
Analytic Methods in Probability Theory.
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1942................................................. Kiyosi Ito publishes On Stochastic 
Processes (In  nitely Divisible Laws of 
Probability), a groundbreaking paper.

1944................................................. Von Neumann and Morgenstern publish 
Theory of Games and Economic 
Behavior, the  rst text on the new  eld 
of game theory.

1950................................................. William Feller writes the  rst volume of 
his famous Introduction to Probability 
Theory and Applications.

1953................................................. Joseph Leo Doob publishes Stochastic 
Processes, a now classic text on 
stochastic (probabilistic) analysis and 
martingale theory.

1966................................................. Norbert Wiener publishes Nonlinear 
Problems in Random Theory.

1966................................................. MIT mathematician Ed Thorp publishes 
Beat the Dealer, a popular work on 
applying probabilistic thinking in the 
game of blackjack in Las Vegas casinos.

1969................................................. Fischer Black and Myron Scholes 
write their seminal paper on a 
mathematical and probabilistic 
approach to pricing options. 

1973................................................. Robert C. Merton publishes Theory of 
Rational Option Pricing.

1994–1998....................................... Long-Term Capital Management 
experiences its strong pro  table run, 
then collapses. 

1997................................................. Robert Merton and Myron Scholes, 
applied mathematicians, win the Nobel 
Prize for Economics for their work in 
options-pricing theory.
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Glossary

Bayes’ theorem: A mathematical equation relating two conditional 
probabilities: P[A|B] = (P[B|A]P[A])/P[B]. 

Bayesian probability: The view in which probability is interpreted 
as a measure of degree of belief. In this view, the concept of probability 
distribution is applied to a feature of a population to indicate one’s 
belief about possible values of that feature. The principal result of 
experiments or more evidence is to update such a probability distribution, 
indicating a change in belief. The Bayesian viewpoint is in contrast to the 
frequentist view. 

Bell’s theorem: A theorem asserting that a particular inequality of certain 
probabilities would be true if intuitive concepts of local realism were true 
of particle physics. The theory of quantum physics violates the inequality. 
Quantum theory implies that when one particle of an entangled pair of 
particles is observed, the other particle in the pair, which could be distant, 
instantaneously undergoes a state change. Bell’s theorem implies that this 
aspect of quantum theory cannot be explained by hidden local variables. 

chance: An informal term that tries to capture the same notion as the 
term probability. 

complementary event: The event complementary to a given event is the set 
of all possible outcomes that are not in (or do not satisfy or do not represent) 
the given event. For example, in rolling two dice, one event is: “The sum of 
the dice is 8.” Its complementary event is: “The sum of the dice is not 8.”

conditional probability: The probability of an event under the assumption 
of the existence (or happening or satisfaction) of another event. For example, 
in rolling a blue fair die and a red fair die, the conditional probability of the 
event “the sum of the dice is 8,” given the event “the blue die is 3 or 6,” is 
2/12 = 1/6, because there are 12 possible outcomes with the blue die being 
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3 or 6, and two of those (blue 3 and red 5; blue 6 and red 2) sum to 8. We 
would say, “The probability of the sum being 8 given that the blue die is 3 
or 6 is 1/6.” 

deterministic model: A mathematical description of a phenomenon or 
mechanism that does not depend on randomness. Every time the model is 
executed with the same initial conditions, the result (prediction) will be the 
same. Contrast with probabilistic model.

disjoint events: Two (or more) events that cannot both happen (for one 
experiment). Each possible outcome of the experiment is in (or satis  es or 
represents), at most, one of the events. For example, in rolling two dice, the 
event “the sum is 8” is disjoint from the event “there is a 1.”

event: A set of possible outcomes of an experiment, trial, or observation. 
For example, for the trial of rolling a blue die and a red die, a possible event 
is: “The sum of the dice is 8.” This event consists of the following  ve 
outcomes: blue 2 and red 6, blue 3 and red 5, blue 4 and red 4, blue 5 and red 
3, blue 6 and red 2. Compare to outcome. 

expected value: Assuming a numerical value is associated with each possible 
outcome of an experiment (or a trial or an observation), the expected value 
of the experiment is the weighted average of the values, where each weight 
is the probability of the associated outcome. The expected value is a number 
that summarizes the possible values. The term can be misleading, because 
often the expected value as a number is not associated with any possible 
outcome. For example, in the experiment of  ipping a fair coin, if the value 
2 is associated with heads and the value 5 with tails, then the expected value 
is 3.5 (which is neither 2 nor 5 and, hence, hardly to be “expected”). More 
formally, it is the expected value of a random variable that is de  ned, rather 
than the expected value of an experiment.

fair: When used in such phrases as “a fair coin” or “a fair die,” this term 
indicates the ideal situation in which the probability of any of the possible 
outcomes is the same.
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 ush: In poker, a hand of  ve cards in which all the cards are of the same 
suit but cannot be placed in sequential order. See straight for examples of 
cards in sequential order. Compare to straight  ush.

frequentist probability: The view in which probability is de  ned in terms 
of long-run frequency or proportion in outcomes of repeated experiments. 
This concept of probability is applied to outcomes of actual or hypothetical 
experiments that have an element of randomness. But in the frequentist view, 
probability is not used as a measure of knowledge or belief of the possible 
values of a quantity that does not have a random element. The frequentist 
viewpoint is in contrast to the Bayesian view.

independent events: Two events are independent if one event’s occurring 
does not affect the probability that the other occurs. If A and B are 
independent events, then ( ) ( ) ( )P AB P A P B ; that is, the probability that 
both A and B occur is the product of the probabilities that each occurs. For 
example, in  ipping two coins, assuming that the results of one  ip don’t 
affect the results of the other, then the probability of both coins landing on 
heads is the product of the probability that the  rst coin lands on heads times 
the probability that the second coin lands on heads.

Law of Large Numbers: The theorem that the ratio of successes to trials in 
a random process will converge to the probability of success as increasingly 
many trials are undertaken. 

mutation: A change in a gene of an organism. Some mutations are inherited 
by offspring of the organism that suffered the mutation. Mutations are often 
modeled as occurring randomly. Probabilistic models make assumptions 
on the rate of mutations that are passed to offspring. From these models, 
conclusions are drawn about the evolutionary history of species. 

odds: An alternative way of expressing the probability of an event by stating 
the ratio: the probability that the event happens divided by the probability 
that the event does not happen. For example, if the probability of an event 
is 20%, the odds are 20/80, or 1/4. This is sometimes stated, “four to 
one against.” 
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option: In the  nancial markets, a contract giving the holder the right to buy 
a prescribed asset (such as a certain number of shares of a speci  c stock) at a 
prescribed time in the future for a prescribed amount of money, or a contract 
giving the holder the right to sell a prescribed asset at a prescribed time in 
the future for a prescribed amount of money, or other related contracts. 

outcome: A possible speci  c result of an experiment, trial, or observation. 
For example, for the trial of rolling a blue die and a red die, one possible 
outcome is blue 3 and red 5. Compare to event.

permutation: An ordering of distinct objects. For example, there are 24 
permutations of the four cards ace of spades, king of diamonds, queen of 
diamonds, and eight of hearts because there are 24 different ways to order 
those four cards.

poker: A card game (with several variations) played with an ordinary deck 
of 52 cards, in which  ve-card sets are compared to see which is “better.” 
The ordering is based on the probabilities of various possible features of a 
 ve-card set; rarer features win.

prime number: A whole number (an integer) bigger than 1 that is not evenly 
divisible by any positive whole number except itself and 1.

probabilistic model: A mathematical description, with random aspects, of 
a phenomenon or mechanism. The model could consist of mathematical 
formulas that refer to random numbers. Thus, one execution of the model 
will generally give different results than another execution. Contrast with 
deterministic model. 

probability: As the term is used in mathematics, a number between 0 and 
1 (or 0% and 100%) applied to a possible future event that quanti  es the 
likelihood of the event’s occurring, or that number applied to a statement 
that quanti  es our degree of belief in the truth of the statement. 

probability distribution: A discrete probability distribution is a table, 
function, or graph that assigns a probability to each possible outcome. For 
the continuous case, in which any real value is a possible outcome, the 
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probability distribution can be viewed as a graphed curve that has an area 
of 1 under the curve and above the horizontal x axis. The probability of an 
outcome being between value a and b is equal to the area under the part of 
the curve between x = a and x = b. 

random variable: The assignment of a number to each possible outcome 
of an experiment. The term random variable is an unusually poorly chosen 
term, because it denotes something that is neither random nor a variable. We 
avoided using this term in this course.

random walk: A sequence of positions of an object that takes one step each 
second (or other unit of time), in which the direction of each step is random. 
The direction of each step is randomly chosen independent of any other step. 
An example of a one-dimensional random walk is formed by  ipping a coin 
to determine whether the next step should be forward or backward.

randomness: The aspect of life, or a system, or a pattern, or a mathematical 
model that is unpredictable even in theory or unpredictable because of lack 
of detailed knowledge. Randomness in a system implies that the behavior 
of the system can be different even if the system is subjected to identical 
circumstances. Although random occurrences are not predictable, they 
exhibit regularity in the aggregate after many repetitions. 

roulette: A gambling game in which a small ball settles into one of 38 slots 
in a wheel as the wheel is spun and slows. The slots are numbered 0, 00, 1, 
2, … , 36. Presumably, each slot is equally likely on any given spin of the 
wheel to be the stopping point for the ball. Note: European roulette wheels 
have only 37 slots (no 00). 

stochastic model: Synonym for probabilistic model.

straight: In poker, a hand of  ve cards that can be put in sequential order, 
with not all  ve cards being of the same suit. Examples include ace, 2, 3, 
4, 5; 9, 10, jack, queen, king; and 10, jack, queen, king, ace; but not jack, 
queen, king, ace, 2. Compare to straight  ush.
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straight  ush: In poker, a hand of  ve cards that can be put in sequential 
order and in which all  ve cards are of the same suit. See straight for 
examples of sequential order. 

uniform distribution: A probability distribution in which every possible 
value is equally likely. 

weighted average: Given a set of numbers { , , , ,...}a b c d (thought of as 
values of some quantity) and a weight for each number ( , , , ,...)a b c dw w w w

 

, 
the weighted average is the value ...a b c daw bw cw dw . The weights 
must add up to 1 and must be non-negative.
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Biographical Notes

Bayes, Thomas (1701–1761). British nonconformist minister. Little is 
known about Bayes’s life, save that he was educated at Edinburgh University 
and was a member of the Royal Society. His major contribution to the  eld 
of probability was the work he did on the inverse probability problem. At 
the time, the calculation of the probability of a number of successes out of a 
given number of trials of a binomial event was well known. Bayes worked 
on the problem of estimating the probability of the individual outcome from 
a sample of outcomes and discovered the theorem for such a calculation that 
now bears his name. 

Bernoulli, Jacques (often called Jacob or James, 1654–1705). Professor 
of mathematics at Basel and a student of Leibniz. He formulated the Law 
of Large Numbers in probability theory and wrote an in  uential treatise on 
the subject. 

Black, Fischer (1938–1995). Applied mathematician and economist. Worked 
both in academia and on Wall Street. Pioneer in the  eld of options pricing 
and among the  rst to bring higher mathematics to the  nancial sector. Held 
long-standing beliefs about the inherent uncertainties in the markets. Most 
famous for coauthoring the Black-Scholes formula, for which his coauthor, 
Myron Scholes, received the Nobel Prize in 1997. 

Cardano, Girolamo (1501–1576). Italian mathematician. An avid gambler, 
he was the  rst to explore the mathematics of probability in order to improve 
his game play. He also recorded the  rst calculations with imaginary numbers. 
Cardano was the  rst to understand that there are fundamental scienti  c 
and mathematical principles guiding events previously only describable 
by chance.

Cauchy, Augustin-Louis (1789–1857). French mathematician and engineer. 
Professor in the École Polytechnique and professor of mathematical physics 
at Turin. He worked in number theory, algebra, astronomy, mechanics, optics, 
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and analysis. His contribution to probability and statistics was the production 
of the outline of the  rst rigorous proof of the central limit theorem, which is 
a generalization of the Law of Large Numbers. 

Chebyshev, Pafnutii Lvovich (1821–1894). Russian mathematician, 
founder of the St. Petersburg School of Mathematics. He made fundamental 
contributions to the theory of probability and statistics, including 
generalizations of the central limit theorem, which is itself a generalization 
of the Law of Large Numbers.

de Moivre, Abraham (1667–1754). French-English mathematician. 
Born in France and educated at the Sorbonne in mathematics and physics, 
de Moivre, a Protestant, emigrated to London in 1688 to avoid further 
religious persecution. A future fellow of the Royal Society of London, de 
Moivre supported himself in England as a traveling mathematics teacher and 
by selling advice in coffee houses to gamblers, underwriters, and annuity 
brokers. De Moivre is recognized in statistics as the  rst to publish an 
account of the normal approximation to the binomial distribution. In fact, 
some of de Moivre’s methods are so ingenious as to be shorter than modern 
demonstrations of solutions to the same problems.

Doob, Joseph Leo (1910–2004). American mathematician. Produced 
substantial work on probability theory, stochastic processes, potential theory, 
and much more. Also authored several seminal texts on probability theory. 

Einstein, Albert (1879–1955). Probably the most famous scientist of all 
time. In addition to his well-known work in several areas of physics, in 1905, 
he presented one of the  rst mathematical treatments of Brownian motion. 
It was Einstein’s interest in statistical mechanics that led him to explore 
Brownian motion.

Fermat, Pierre de (1601–1665). French lawyer and mathematician. 
Through an interest in games of chance, Fermat used his mathematical 
prowess to study the mathematics of chance. Following a brief 
correspondence with Pascal, the two came to be considered joint founders of 
mathematical probability.
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Huygens, Christiaan (1629–1695). Dutch astronomer and mathematician. 
While most famous for his discoveries about the planet Saturn and his 
invention of the pendulum clock, Huygens was also an early pioneer of the 
mathematics of probability. Following a meeting with Fermat, he presented 
the  rst printed work on probability theory.

Ito, Kiyosi (b. 1915). Japanese mathematician and statistician. His 
contribution to probability theory was to develop the notion of stochastic 
(probabilistic) differential equations.

Kolmogorov, Andrei Nikolaevich (1903–1987). Russian mathematician 
who ranks among the greatest of the 20th century. A formalist who helped 
axiomatize probability.

Laplace, Pierre-Simon Marquis de (1749–1827). French mathematician 
and astronomer. Professor at the École Normale and École Polytechnique, 
known for his contributions to calculus, analysis, probability theory, 
and physics. One of the earliest mathematicians to formalize the theory 
of probability. 

Levy, Paul Pierre (1886–1971). French mathematician. A pioneer in modern 
probability theory. Not a formalist like his contemporary, Kolmogorov; an 
important class of stochastic processes bears his name. 

Markov, Andre Andreevich (1856–1922). Russian mathematician. Member 
of the St. Petersburg Academy of Science. Markov worked on the Law of 
Large Numbers and random walks. 

Merton, Robert Carhart (b. 1944). Applied mathematician. Student of 
Nobel laureate Paul Samuelson. Credited with being among the  rst to bring 
stochastic calculus and other sophisticated probabilistic tools to  nance. 
Helped develop the Black-Scholes pricing formula (also called Merton-
Black-Scholes). He developed probabilistic and analytic theorems that paved 
the way for the now-high-pro  le  eld of  nancial engineering. Recipient of 
the 1997 Nobel Memorial Prize in Economics.
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Neumann, John von (1903–1957). Hungarian mathematician and one of the 
original members of the Institute of Advanced Study at Princeton University 
(along with Albert Einstein). A genius who contributed to many areas of 
mathematics and physics, he is most popularly known as the inventor 
of game theory. He authored a celebrated text, Theory of Games and 
Economic Behavior. 

Newton, Sir Isaac (1642–1727). English mathematician and scientist known 
for the discovery of the law of gravity and as one of the fathers of calculus. 
Within the  eld of probability, he is known for his proof of the binomial 
theorem. There is also evidence that he gave thought to the variability of 
the sample mean, the basis for the central limit theorem. In his last work, 
The Chronology of Ancient Kingdoms Amended, published posthumously in 
1728, Newton estimated the mean length of a king’s reign to be between 18 
and 20 years. 

Pascal, Blaise (1623–1662). French mathematician and philosopher. In the 
summer of 1654, he exchanged a series of  ve letters with Fermat, in which 
they explored a dice game. The  rst question they considered was how 
many times one must throw a pair of dice before one expects a double six, 
as well as how to divide the stakes if a game is incomplete. Because of this 
correspondence, they are usually considered the cofounders of probability.

Poisson, Simeon Denis (1781–1840). French mathematician. He published 
Recherches sur la probabilité des jugements en matière criminelle et matière 
civile in 1837, marking the  rst appearance of the Poisson distribution, 
originally found by de Moivre, which describes the probability that a random 
event will occur in a time or space interval under the conditions that the 
probability of the event’s occurring is very small. Poisson also introduced 
the expression Law of Large Numbers, by which he meant that, for a larger 
number of trials, the proportion of successful outcomes exhibits statistical 
regularity. Although we now rate this work as of great importance, it found 
little favor at the time, the exception being in Russia, where Chebyshev 
developed his ideas.
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Scholes, Myron (b. 1941). Applied mathematician and economist. Coauthor 
of the Black-Scholes options-pricing formula. Recipient of the 1997 
Nobel Prize in Economics. Scholes laid down fundamental mathematical 
assumptions that still dominate derivatives pricing in the  nancial markets 
today. He was a partner at the famously ill-fated hedge fund Long-Term 
Capital Management.

Wiener, Norbert (1894–1964). Applied mathematician. He mathematically 
extended the work done by Einstein on Brownian motion (hence, the results 
are often called Wiener processes). In addition, he generalized and abstracted 
several fundamental notions and de  nitions in probability theory, laying the 
foundation for Ito’s work on stochastic analysis. 
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