
1

Familiar Metric Management -
Small is Beautiful-Once Again

By Lawrence H. Putnam and Ware Myers

Quantitative Software Management, Inc.

Selecting the right team size—small—is the key to a successful project. By successful we mean
one that comes in on time, on budget, with good quality. Further, we mean one that actually
completes faster with less effort than the same project attacked with a large team.

In our column “The Effort-Time Tradeoff—It’s in the Data” (March 1997), we showed (in Figure
25) that projects with 20 or more people used a lot more effort (person-months) than projects using
five or fewer people. That comparison was for projects of the same size in source lines of code,
presumably requiring about the same amount of work. For example, at a size of 50,000 SLOC, the
large teams expended 99 person-months, the small teams, 19 person-months. The numbers seem
hardly believable, and perhaps some of you raised your eyebrows slightly.

In that early column we were putting the emphasis on the effort-time tradeoff that the software
equation implies:

Functionality (size) = (Process Productivity) (Effort/B)1/3 (Development Time)4/3

In this column, aided by new data on almost 500 projects, from a large corporation, we are putting
the emphasis on the great value of small teams. We remembered—somewhat vaguely perhaps—
that this subject came up when we were in graduate school. So we hunted around for the most
recent textbook on management we had handy. It turned out to be one left by one of our sons when
he was in college. After a 13-page chapter, citing 58 references (including the Bible), the authors of
this ancient tome concluded:

“. . . where the work is not routine and requires members of the work group to have frequent
contact, exceeding the traditional limit of six should be done with caution and serious
consideration of the undesirable consequences which may follow.” i

That was written when the software age was still young (1969). The authors’ references go back as
far as 1927. The idea of small work groups is hallowed by time. If ever there was work that is not
routine and requires frequent contact, it is software development. What we now bring to the table
is metrics. Those metrics establish that the concept of using small work groups in software
development is a really beautiful idea. Let us show you the figures.

Small groups complete projects in less time

The data that we obtained came from 491 medium-sized projects between 35,000 and 95,000 new
or modified source lines of code. All were information systems completed in the last three years.
“New or modified” limits the code metric to “Effective SLOC,” that is, the work that was actually
done. It excludes reusable components that require little or no new work.

2

The next step was to stratify the sample projects into five team-size groupings, as shown in Figure
1. There are three features of this stratification to note in particular:

• The number of projects in each group is substantial (so our conclusions can be
credible);

• The data sets are fairly well distributed across the entire size regime;
• The average size of the stratified data sets is 57,412 Effective SLOC and the average

of each set is within 3,000 ESLOC of this overall average.1

Average Staffing vs Size

New and Modified SLOC (thousands)
10 100

A
verag

e S
taff

1

10

100

1.5 - 3 people, 138 Projects

3-5 people, 162 projects

5-7 people, 120 projects

9-11 people 46 projects

15-20 people, 25 projects

Figure 1. The projects are stratified in two dimensions: size horizontally and staff
vertically. Since both axes are logarithmic, the diagram covers a large range of
information.

The next figure shows that the three small groupings took less schedule time than the two large
groupings (Figure 2). In fact, development time for the three small groupings is about three
quarters of the time for the two large groupings.

1 We are indebted to Douglas Putnam for making this analysis.

3

Average Schedule Months

S
tu

d
y D

ata S
ets

Development Schedule (Months)
0 2 4 6 8 10 12 14 16 18 20

1.5 - 3 people, 13.6 Months

3 - 5 people, 11.9 Months

5 - 7 people, 11.6 Months

9 - 11 people, 17.1 Months

15 - 20 people, 16.29 Months

Less Time More Time

Figure 2. There is a distinct difference in the schedule time required by groups in the
three-to-seven range as compared to the nine-to-20 range.

Small groups use fewer person-months

Figure 3 shows the pattern for development effort. The difference is much more marked than in the
case of schedule. The three small groupings take only about one fourth the effort of the two large
ones—remember, each grouping is producing about the same amount of system functionality.

4

Development Effort

S
tu

d
y D

ata S
ets

Phase 3 Effort

Development Effort
0 25 50 75 100 125 150 175 200 225 250 275 300 325

31

48

69

167

283

1.5 - 3 people, 138 Projects

3-5 people, 162 projects

5-7 people, 120 projects

9-11 people 46 projects

15-20 people, 25 projects

Less Effort More Effort

Figure 3. A distinct difference in the person-months needed to do a comparable amount
of work begins to show up when group size exceeds eight people.

We present a somewhat different representation of the effort data in Figure 4. Here the projects
completed by two-to-five person teams are located (on a log-log field) by small squares. The lower
of the two slanting lines represents their average location. The projects completed by larger teams
(seven to 14 people) are represented by the small circles and the upper line. At the 10 EKLOC size
the larger team effort is about four times as great as the smaller team effort, and that ratio
continues out to 100 K.

5

S m a ll Teams vs Larger Teams

Constuction & Test Effort

Effective SLOC (thousands)

10 100

C
onstuction &

 T
est E

ffort (P
M

)

1

10

100

1000

IS Projects 2 - 5 peop le IS Pro jects 9 to 20 people Avg.

Figure 4. The larger teams (upper line and circles) take much more effort than the
smaller teams (lower line and squares).

Process productivity reflects effect of group size

It comes as no surprise that the process productivity indexes of the three small groupings are about
three index points higher than the indexes of the two large groupings, as Figure 5 details. The
productivity indexes of the small groups average 16.28; those of the large groups, 13.38. That is a
difference of approximately three index points. Each index point represents a gain of 1.27 times in
process productivity over the previous index. A gain of three index points, therefore, doubles the
process productivity (1.27)3.

As you will recall from the software equation quoted at the beginning of this column, when project
size is held constant, a few algebraic operations makes process productivity inversely proportional
to the schedule and effort terms:

Process productivity = Constant / (Effort/B)1/3 (Development Time)4/3

So the equation says, when schedule and effort improve dramatically (that is, smaller numbers),
process productivity improves significantly as well. And indeed the data show it did!

6

Average Productivity Index

S
tu

d
y D

ata S
ets

PI

Productivity Index
0 2 4 6 8 10 12 14 16 18 20 22 24

1.5 - 3 people, 138 Projects, PI=16.36

3-5 people, 162 projects, PI = 16.29

5-7 people, 120 projects, PI = 16.18

9-11 people 46 projects, PI = 13.72

15-20 people, 25 projects, PI = 13.03

Lower Productivity Higher Productivity

Smallest
 Amount

of Variation

Figure 5. The process-productivity index is a linear expression of the actual process-
productivity parameter, so the real difference in productivity (a factor of about two
times) between the small groupings and the large groupings is muted on this linear
diagram. The high-low variation bars are set at one standard deviation above and
below the mean.

Optimum size is three to seven

Confirming the classical research of our son’s textbook , our metrics verify that we should develop
software in groups of three to seven. If we go to groups larger than seven, we pay a severe penalty
in the time and effort a project takes.

Of course, a “group” of one has many advantages. It can confer with itself sitting in a corner with
its eyes closed. It need not spend time batting down not-so-brilliant ideas from other team
members. But it has disadvantages: it goes on vacation, it gets sick, and it has no replacement. And
so on.

A group of two has many pluses, too, as any happily betrothed man or woman can attest. Two is
the number good old “evolution” arrived at. But the number is a bit unstable, as the number of
orphans suggests. Still, don’t mind our negative attitude. Do use one or two folks on small suitable
[non-strategic] projects.

On the great mass of mid-sized information systems projects (and comparable projects in other
application areas) we are going all-out for three to seven.

What about really big projects?

7

The average project size, reported to us, has been declining from about 80 KSLOC in the early
1980s to about 40 KSLOC in the 1990s, as we diagrammed in our May 1998 column. Those sizes
are well within the range of the present study. Still, there are occasional very large projects that we
hear about when they fail. We agree: they cannot be done by a team of seven. Unfortunately, a
project of 50 or 250 people is going to run right off our diagrams! What to do?

The immediate answer is obvious. Huge projects have to be split up into little projects that little
teams can handle. You might have noticed that the last sentence has nobody doing the splitting up,
and not by accident. We can nominate some titles: customers, project managers, architects, senior
designers, stakeholders in general. Some of these people must know how to do it, because some
very big jobs have been accomplished. In our experience, however, people with these abilities are
very, very scarce. So, the not-so-immediate answer is shrouded in the fog of the future.

i Alan C. Filley and Robert J. House, Managerial Process and Organizational Behavior, Scott, Foresman
and Company, Glenview, IL, 1969, 502 pp.

