
Technology Can Only Do So Much: Why the Human
Factor Continues to Frustrate Software Developers

“Adding manpower to a late software project makes it later.”

In 1975, Fred Brooks reminded us there are finite limits to our ability to compress
the development process. Moreover, throwing people onto troubled software projects
often backfires. These insights should not have surprised us; after all, time and effort
are hardly fungible commodities. Even with the best tools and methods, nine women
still can’t deliver a baby in one month.

But if Brooks merely reminded people of what they already suspected, why do so
many software projects still come in late and over budget? A recent study of the
QSM database showed that large projects (defined as over 50,000 ESLOC) have only
a 19% chance of meeting their planned schedules and a 30% probability of making
their budgeted effort. After thirty years of technological change and process
improvement effort it’s discouraging to see organizations still struggling with the
same old problems. Why does this still happen so frequently? More importantly, what
can we do to overcome these problems?

Tools and Methods Improve, But People Remain All Too Human

Part of the problem is that while technology has changed rapidly, human nature
remains constant. A critical ingredient in software development - perhaps the critical
ingredient - is people. This is an insight technical managers sometimes forget to
factor into their plans.

Tools and methods allow us to do things more efficiently, but software development
remains a uniquely human endeavor. Consequently, successful project management
requires a mastery of both people and technical skills. The first part of this paper
deals with the human factors that trip up so many software projects. The latter part
brings data to the problem solving table.

The people problems that plague software teams tend to involve over-optimism, fear
of measurement, and using the wrong tools for the job. They fall into three broad
categories:

The Triumph of Hope over Experience:

• Competitive pressure. Bid solicitation (especially in the outsourcing world)
involves a great deal of internal pressure on participants to win business. This
competitive ‘tunnel vision’ often leads to overly optimistic assumptions that
ignore an organization’s proven ability to deliver software.

• Unfounded productivity assumptions. If it has always taken 20 hours to
produce a widget, assembling a crack team of developers will not cut that
number to 10. Productivity improvement is a long-term endeavor; not a
short term fix.

Fear of Measurement:

• Not learning from history. Companies which measure projects well
develop organizational self-knowledge, identify capacities and patterns, and
come to know their strengths and weaknesses. In short, they learn from
experience and develop an empirical basis for project planning.
Unfortunately, most organizations lack formal software measurement and
evaluation capacity or measure and plan haphazardly. Lacking self-
knowledge, these organizations continually put themselves at risk.

• Not planning for growth. The planned project generally differs from the
delivered project in one key component: it is smaller and delivers less
functionality. Good project management and effective change control help
mitigate scope creep, but a recent QSM study showed median size growth of
about 20%. Projects locked into budgets and schedules based on one set of
requirements will be sorely pressed to meet these commitments when the
requirements increase.

• Not watching where we’re going. Most software teams work hard and
want to succeed. There is an admirable human tendency to double one’s
efforts when problems arise. Such industry should be encouraged, but
Herculean effort makes a poor substitute for timely, gentle course corrections.
In fact, it is usually too late to take effective countermeasures when problems
finally manifest themselves.

Applying the Wrong BandAid:

• Ineffective or inappropriate countermeasures. There are only three
possible courses of action when a project threatens to exceed budget or
schedule. Each works within a limited range of possibility and carries
accompanying cost.

o Relaxing the schedule: Results in a less expensive project with
fewer defects. There are good and bad reasons why this option is not
used more often. Legal or contractual requirements may mandate
delivery by a certain date; late delivery may invoke penalties or loss of
customer goodwill. Also, organizations may have committed project
staff to other endeavors. The bad reasons center more on reluctance
to change and unwillingness to “lose face”.

o Reduce the scope of the delivery. Deferring non-critical
functionality until a later release (or eliminating it entirely) can keep a
project within time and cost constraints. The cost is obvious: less is
delivered than was promised or expected.

o Add staff. Within a narrow range, adding staff can reduce schedule,

albeit slightly and at considerable cost. As many managers have
discovered, schedule/effort tradeoff is non-linear: a single unit of
schedule reduction “costs” many units of effort and this ratio increases
exponentially as the schedule is compressed.

Challenging the Conventional Wisdom

So, what are harried software managers to do when faced with non-linear
relationships between time and effort, technology that changes constantly, and
human behaviors that, despite experience, remain stubbornly entrenched? This is
where measurement is invaluable. Having a good metrics program in place tells
organizations several important things: what they have built in the past, what their
historical capabilities are, and which patterns in the data may be helpful in the
future. A good metrics program does one more thing: armed with a good historical
baseline, managers can monitor their progress and make timely course corrections
as projects unfold. For managers who need to assess the risks/benefits of using new
technologies in real time, this kind of feedback is priceless.

As technology continues to shift the productivity curve outward, managers are
tempted to challenge the conventional wisdom. The allure of Agile programming may
make them wonder if it isn’t possible, after all, to make that baby in one month
instead of nine. This is not necessarily a bad thing. As new tools and methods appear
it makes sense to reexamine old assumptions about the relationships between time,
effort, and productivity. But that reexamination should be grounded in empirical
methods and hard data, not pie in the sky optimism.

Take Fred Brooks’ famous maxim, “Adding manpower to a late software project
makes it later”. QSM researchers have found a strong correlation between project
size and most other metrics. In our experience, the non-linear relationships between
size, time, effort, and defects often make simple rules of thumb less than universally
applicable. In practice, these tried-and-truisms often hold true for many, if not most
projects but since many software relationships ‘go exponential’ at certain points
along the size spectrum, it’s probably not a bad idea to test them against the data.

“Adding Manpower to a Late Project Makes It …”

We looked at large Information
Technology software projects
completed in the last decade to
answer the question, “Just how
does the ‘mega staff’ strategy
affect large projects?” On a
scatter plot of effective (new
and modified) size vs. average
staff we found an interesting
separation in projects at the
high end of the staffing curve.
We call this gap the “Unglued
Point”: where staffing runs
wild.

Below 100,000 lines of code,
the projects are evenly
distributed. But beginning at
the 100 K ESLOC mark, a hole
opens up, separating the bulk

of these projects from those staffed at far higher levels.

The trend lines in the first chart are average, plus, and minus one standard deviation
lines. At any point on the size spectrum, there is wide range of staffing strategies.
Above the range of ‘normal’ variability is the unglued point, representing projects
with exceptionally high staffing. The high staff projects position well above the +1
standard deviation line, placing them over the 68th percentile, closer to the 75th
percentile or above.

What can these high staff projects tell us? How do their schedules compare with
other, more reasonably staffed projects? How does the high staff strategy impact
project quality? And of course, what are the cost implications of such a strategy?

Let’s find out.

The second graph displays only projects above the unglued point for staffing. The
parallel lines show average, plus and minus 1 σ trend lines for “reasonably staffed”

projects. Crossing these
diagonally is the trend
from the high staffed
projects shown. For
projects up to 100,000
lines of code, using large
teams seems to deliver
projects at or below the
QSM average for schedule.

However, matters
deteriorate rapidly as
projects increase in
size. At best, aggressive
staffing may keep a
project’s schedule within
the normal range of
variability but this strategy
becomes increasingly
ineffective as project size
increases.

What about quality? Again,
only high staff projects are
shown. The steeply sloped
line crossing the QSM
defect trend lines is the
average of the mega-
staffed projects. Their
quality is consistently
worse than average
(higher defect density)
and increases
precipitously as the
projects increase in
size. The impact of high
staffing on project quality
is clearly negative.

Finally, what are the cost
implications of the large
team strategy? First let’s
review what is purchased
in terms of schedule reduction: at best high staffing moves a project into the range
of normal schedule variation, though this strategy becomes increasingly ineffective
as projects increase in size. Overall project quality, which is its legacy to its users, is
worse than normal. Now the cost: as the following table illustrates, high staffed
projects are several times more expensive.

Project Size Average Peak Staff Unglued Staff
50k $1,976,200 $5,551,100
100k $2,974,600 $10,470,300
200k $4,449,400 $20,200,000
500k $7,799,200 $47,300,000
1M $11,652,100 $87,900,000

Average Project Cost at $10,000/Staff Month

Conclusion
So, how did Brooks’ famous maxim hold up against the evidence? Does adding staff
to a late project only make it later? It’s hard to tell. Large team projects, on the
whole, did not take notably longer than average. For small projects the
strategy had some benefit, keeping deliveries at or below the industry average, but
this advantage disappeared at the 100,000 line of code mark. At best, aggressive
staffing may keep a project’s schedule within the normal range of variability.

Contrary to Brooks’ law, for large projects the more dramatic impacts of bulking up
on staff showed up in quality and cost. Software systems developed using large
teams had more defects than average, which would adversely affect customer
satisfaction and, perhaps repeat business. The cost was anywhere from 3 times
greater than average for a 50,000 line of code system up to almost 8 times
as large for a 1 million line of code system. Overall, mega-staffing a project is a
strategy with few tangible benefits that should be avoided unless you have a gun
pointed at your head. One suspects some of these projects found themselves in that
situation: between a rock and a hard place.

How do managers avoid these types of scenarios? Software development remains a
tricky blend of people and technical skills, but having solid data at your fingertips
and challenging the conventional wisdom wisely can help you avoid costly mistakes.
Measurement allows you to manage both the technical and people challenges of
software development with confidence whether you are negotiating achievable
schedules based on your proven ability to deliver software, finding the optimal team
size for that new project, planning for requirements growth, tracking your progress,
or making timely mid-course corrections.

Kate Armel is a technical manager with Quantitative Software
Management, Inc. She has 8 years of experience in technical writing,
metrics research and analysis, and assisting Fortune 1000 firms
estimate, track, and benchmark software projects. Ms. Armel was the
chief editor and co-author of the QSM Software Almanac.

