GEARING FACTORS

A FLEXIBLE SIZING APPROACH

MEASURING SOFTWARE SIZE

Estimating the scope of a proposed system is one of the most challenging aspects of software project
planning. Size estimation is often viewed as a difficult and thankless job, so it’s hardly surprising that
many project managers skip size-based software estimates in favor of level of effort or task-based
estimation. This is unfortunate, because decades of empirical data show a strong correlation between
the delivered size of a software project (whether captured in logical lines of code, function points,
story points, requirements, or use cases) and its final schedule, effort, and quality. The graphs below
plot each of the major management metrics against delivered system size for 13,000 completed
software projects. All — without exception — increase with software size.

Phase 3 Trends

MB Duration (Months) vs Effective SLOC MB Effort (MM) vs Effective SLOC
1,000 100,00

=10,000

1,000

[syuow) vonesng g

0.1

0.01 001
0.001 0.01 0.1 10 100 1,000 10,000 0.001 0.01 01 1 10 100 1,000 10,000
Effective SLOC (thousands) Effective SLOC (thousands)
Defects (SIT-Del) vs Effective SLOC Pl vs Effective SLOC
50
o
"
g
v
i
g
; -10
0.001 001 01 1 10 100 1,000 10,000 0,001 001 01 1 10 100 1,000 10,000
Effective SLOC (thousands) Effective SLOC (thousands)
® All systems = O5M Industry Data — Avg. Line Style

Intuitively, it makes sense that a project’s schedule, effort, cost, and defects should be directly related
to the quantity of delivered features. High-level and detailed design, coding, package
configurations/customizations, quality assurance, documentation, and release management comprise
the “work” required to design, implement, test, and deliver each individual feature. As more and more
features are added to a release, the total effort and time required to complete the project increases as
well. So do the average number of defects!

Size isn’t of interest only to estimators. Software estimation, productivity measurement, and
benchmarking all rely on the same well established set of software metrics. For decades, these core
measures - size, time, effort, and defects - have been used to support a broad range of management
decisions. Organizations measure their projects to better predict and control the costs (in time, effort,
and money) associated with various management tradeoffs. But there are also dramatic quality
consequences associated with compressing schedules and piling on staff to meet market deadlines.

In a very real sense, a project’s effort outlay, schedule, and reliability depend upon assigning the right
resources to the project before it begins missing deadlines. But how can managers plan efficiently if

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

they don’t know how much work is needed to translate a given set of requirements into executable
code? It is tempting to think of software development work in terms of the effort or resources applied
to the project, but this formula puts the cart before the horse. From an estimation perspective, effort
(or staff over time) is an output. It can help predict how much the project will cost, but not the amount
of work needed to implement the requirements (or the speed with which those requirements can be
converted to software).

This is why measuring project size is so important.

Without a notion of functional size, it is difficult to negotiate realistic schedules consistent with your
organization’s proven ability to deliver software. Over four decades of collecting and analyzing
completed software projects show that most software metrics increase exponentially as the volume of
delivered functionality grows. Unfortunately, human beings think and estimate using simple, linear
rules of thumb while software data exhibits strikingly non-linear relationships between size and effort,
schedule, and quality. With a little history (and the ability to place an estimate in the correct size
regime) managers can empirically show how unlikely it is that a 10 person team that successfully
delivered a 150,000 ESLOC project over six months will deliver half the functionality in half the time.
The data makes their argument for them.

Data driven estimation allows managers to sanity check current plans against past performance or
industry trends and negotiate achievable outcomes based on a realistic assessment of how much
functionality can be built with a given time frame and resource profile.

ESTIMATING SIZE

It’s all very well to say that project managers should measure size. But without a method that is simple to use,
repeatable, and above all practical, size estimation is unlikely to gain widespread acceptance within an
organization. With the text based programming languages of the past, measuring system size was a fairly
straightforward process. Source Lines of Code (or SLOC) were easily measured at the end of a project via text
export and automated code counters. The downside of using SLOC as an estimation measure is that code counts
have little meaning to nontechnical personnel and customers. Without an empirical baseline, it can be difficult to
draw connections between the business requirements (often, the only convenient size measure at the time of
estimation) and final code counts.

This translation problem has only been exacerbated by the move from text- and procedure-based programming
languages to today’s object oriented, package-driven, and GUI design environments. Nth-generation development
tools don’t always lend themselves readily to SLOC-based sizing methods. These days, developers may never write
a single line of code. They create software by configuring objects and fields or diagramming relationships with
sophisticated graphical tools. Bridging the gap from more abstract software components to finished application
size is best accomplished by breaking the work to be accomplished into a series of steps and then relating each set
of steps back to a known quantity.

Depending on the technology chosen (or how the project team solves technical issues associated with the project)
the “steps” needed to implement a given set of business or technical requirements can be represented by a variety
of size measures: function points, epics/stories/story points, web pages, reports, configurable database fields,
scripts, diagrams, or SQL queries. Some steps involve writing actual code while others require development staff to
drag and drop elements or set properties via a graphical interface.

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

Depending on the information available, estimates can be detailed or high level. A detailed size estimate might
decompose the work into groups of related tasks:

e Aset of scripts that migrates data from an existing application to the new platform and performs needed
transformations.

e A GUIfront end designed by dragging, dropping, and configuring screen elements (screens).

e Aset of business rules, reports, and queries.

Another estimator might size the same system using a single abstract size measure that maps to the entire
system. Function points, requirements, or Agile epics/stories/story points are often used for this purpose. The
estimator is free to choose the method that best suits the information he or she has on hand at the time the
estimate is compiled.

Regardless of the method chosen, comparing or combining different sizing components is impossible without first
identifying some sort of common denominator (a ‘conversion’ or ‘gearing’ factor) that tells the estimator how big
they are, relative to each other. Decomposing system size into smaller, abstract size chunks and using a single
conversion unit to “gear” these differing size units to a common point of reference allows estimators and project
teams the flexibility to describe the project in terms of the work they will perform rather than dictating a rigid, one-
size-fits-all approach. Once the project is completed, the conversion (or “gearing”) factor facilitates meaningful
comparisons between projects measured in different functional size units.

THE BASE SIZE UNIT

QSM calls this common denominator the Base Size Unit. In the past, SLOC was a nearly universal measure of work
for software projects spanning different technologies, languages, and development paradigms. But the advent of
modern diagramming tools, GUI languages, and programming environments makes lines of code less useful as a
measure of work performed. Developers who use diagramming tools may find that a combination of GUI actions
better represents the work needed to translate a given set
of requirements into software. Those who spend their time
configuring database tables can identify the smallest unit of
STORIES work applicable to database construction and build from

there.

It doesn’t matter what the Base Size Unit is called. What
matters is that estimators identify the high level
programming tasks (or steps) to be performed, then
decompose each step until it requires approximately the
same amount of time and effort as writing an executable
line of code. This is an idea most developers understand
intuitively, since even in GUI or package implementation
environments some code must still be written by hand. The
goal is to preserve a common frame of reference while

QSM Data base allowing users to choose the sizing method that most

accurately reflects the actual work being performed:

translating abstract requirements into a concrete,
functioning software system.

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

CALCULATING GEARING FACTORS FROM COMPLETED PROJECTS

One of the best ways to derive gearing factors is from completed software project data. If a single size component
is used, gearing factors can be calculated at the end of a project and the resulting factors used to estimate new
projects. If multiple components are used, gearing factors can also be estimated during the sizing process and
confirmed by sampling while the project is underway or once it finishes.

For completed projects sized using a single size component (examples: Function Points, stories, requirements, or
use cases), the gearing factor is best determined by running an automated code counter on the software product
and dividing the LOC count by the number of size components delivered in the final product. For Stories, if your
Base Size Unit is SLOC, the gearing factor is the average number of lines of code per Story. This figure is obtained
by dividing the effective (new_LOC + modified_ LOC) count from a few comparable completed projects by the
delivered/final story count from each project.

For a single language project sized in function points, the calculation would be similarly straightforward. The
calculation for a 100,000 line of code project with a final function point count of 2500 would look like this:

Final effective SLOC count/ Final effective function point count
=100,000/2500
=40 SLOC/FP

For mixed language projects, this process is a bit more complex. When calculating gearing factors to be used for
future estimates, care should be taken to use only projects written solely or primarily (85% or more) in the
language of interest. For obvious reasons, calculating a function point language gearing factor for Java from a
project that is only 5% Java will not result in an accurate gearing factor for that language. For mixed language
projects in which the mix of languages is well known, relative percentages can be applied to the overall gearing
factor to yield estimated language gearing factors for each constituent language. It is obviously preferable,
however, to use single language projects to calculate language-specific gearing factors.

ESTIMATED OR SAMPLED GEARING FACTORS

If gearing factors are not available from your completed projects, they can be derived during the estimation
process by breaking the work to be accomplished into discrete steps or components and dividing each step or
component into complexity bins (each with an associated gearing factor that ties it back to the basic unit of work).
For a COTS package implementation, this process might begin with a high level architecture view that flows into a
more detailed breakdown of how requirements are implemented in each tier of the finished application.

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

In the presentation tier of the example pictured above, the presentation layer items are identified (a style sheet
that standardizes the look and feel of each user page and update screens that allow users to log in, display and
update their user profile, and manipulate complex data arrays). These “steps” or size components are then
logically decomposed into complexity bins (low, average, high) and mapped to their associated technologies. In
the first example (a simple login screen implemented in JSP) the Base Size Units represent the work required to

configure fields on a login screen.
Example 1: Simple Login screen implemented in JSP
Fields (2) *
e {# User Actions (1 per field)+

e # Checks (Low 2, Average 3, High 5)

The second example (a style sheet design element), looks more like what we might expect for traditional lines of
code, though it may in fact have been produced in a GUI environment:

Example 2: Average ‘look and feel’ style sheet design element (HTML or XML):

Average or Expected Sizes

(to get Low/High, add +/- 20%)
e Header =30 HTML
e Footer =8 HTML
e Navigation =12 HTML

When sizing the middle tier, a variety of different components requires a flexible approach. A complex report that
allows users to drill down to derive information is sized as follows:

Tables:

e 6-10 Tables * 6 Definition Steps + Calculations & Control Breaks:

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

= 12-20 Fields * 6 Definition Steps

Sizing a complex controller yields the following calculation:
of Fields (Low 5 Fields, Average 7 Fields, High 10 Fields), *

e 4 Methods per Field
e upto2Java Beans

The work involved in data persistence and lookup is estimated by breaking this task into its simplest form:

e 1 Llookup Statement +
e # of Fields to Map in Single Table
= —Low 15, Average 100, High 200

More complex lookups are accommodated by adjusting the number of lookups and multiplying the average
number of fields in a table by the number of tables to be queried. The beauty of tying the Base Size Unit to a rough
line of code equivalent is that it allows development teams the freedom to ignore code, use code exclusively, or
combine GUI and SLOC estimates, as in this interface example:

e 13-50 Data Elements +
e (6-20 Data Translations * 10 ESLOC per Translation) +
e 150-300 ESLOC (Code to filter the data)

Regardless of the task, the process of deriving the gearing factor is the same. The estimator begins at the highest
level and logically walks through the process of creating each component or “step”, asking questions such as, “How
do we create a simple login screen?” “On average, how many fields does a simple login screen contain? Do you
have to configure each field? If so, how many configurations/properties (on average) must be performed per
field?”

Often the answer to these questions will be a range (high, medium, and low) rather than a single number. This is
fine, because it allows estimators to determine an expected value and uncertainty range for each size estimate.
Once the individual low, most likely, and high estimated gearing factors for each sizing component have been
rolled up, they can be loaded into a sizing spreadsheet to speed up future size estimates and encourage
standardization across projects. The example below shows the roll up for the data tier of the example shown
earlier:

9922 Range: 7835 to

Post Results

Lot Enter data in columns B-E and G-1. You may enter Low, Most Likely, and High OR you may enter just the

48 =0 Tz 1 3
80 00| 120 i 3

Average Table Space
Comples Table Space

Compoenent Name Low Likely High low Likely High
Complex Laad |00 1000 1200 !
Shell Seript r 0 100 120 18 1 57
Simple Extraction Scripts [128 180 92 10 N 30
Auerage Extraction Seripts | 220 400 420 i c
Complet Extraction Scripts r B4l 00| 360
Simple Table Space r 18 20| 4 i 3
F
r

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

If your programming environment allows text exports of code, you can verify and refine the initial estimates by
sampling code for a few completed size elements and comparing these code counts to your estimates. When code
counts are not available, another way to empirically confirm your size estimates is to compare your estimated
gearing factors to one or more completed components of the same type, using the same “steps-based”
decomposition technique. So (for example), you might identify several specific instances of a complex report and
compare the steps actually required to create each report to your estimated steps. Earlier, a complex report was
estimated thusly:

Tables:

e 6-10 Tables * 6 Definition Steps + Calculations & Control Breaks:
= 12-20 Fields * 6 Definition Steps

In this case, you would start with a completed complex report and reconstruct or count the actual number of
tables and fields involved, verify the actual steps required to define each one, and compare the rolled up “gearing
factor” for one or more complex reports to your original estimate.

Remember: the goal is not perfection, but the creation of a practical, consistent, and repeatable process that
simplifies future calibration and estimation of similar projects. A line of SQL query code might be more complex
than a line written in Python, but when development work is reduced to the smallest identifiable and practical unit
of work, these differences will be minimized. The important thing to realize is so long as you are consistent in your
measurement approach, differences in complexity will be reflected in the Productivity Index. Complex projects of
the same size will take longer to build and will exhibit lower average Pls, but when these projects are used to
estimate future projects of a similar nature, their calibrated Pls will automatically “build in” the right amount of
time and effort going forward since their increased complexity is reflected in the final project PI.

Measurement is never a perfect endeavor but we learn more about the interplay between various project metrics
when we measure all dimensions of a software project than when we count on incomplete measurement,
intuition, expert judgment, or linear rules of thumb for guidance. Armed with a few simple questions and the
power of completed project data, project managers will be in a much stronger position when it comes time to
negotiate a few extra weeks of schedule flexibility or a reduction in delivered functionality.

Kate Armel is the Director of Testing, Training, and Technical Support for Quantitative Software
Management, Inc. She has over two decades of experience in technical writing, metrics research
and analysis, and assisting Fortune 1000 firms with software estimation, tracking, and
benchmarking.

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

© Copyright 2021 Quantitative Software Management. Inc. All Rights Reserved.

