
It is common to hear this question dur-
ing project development: “How large is

this project?”
One type of answer might be, “Oh,

let me see. I believe that this is about a
500 effort-hour project.”

In the world of software develop-
ment, size means different things to dif-
ferent groups of people. Those who
specify functional requirements – and
perhaps pay for the project, too – may
conceptualize size in financial terms.
Since project effort is a key component
of cost, sizing in effort-units allows them
to place the project in a cost-and-
resource framework.

Software developers, while keenly
aware of the effort required to complete
their tasks, are more likely to describe size
in terms of the things they have to pro-
duce to implement the requirements.
Their sizing units are screens to be devel-
oped and modified, reports, database
tables, Web pages, scripts, object classes,
and a host of others.

To the software estimator, size quan-
tifies what a project delivers or proposes
to deliver. Concrete measures such as
source lines of code or more abstract
ones such as function points are the esti-
mator’s size units, and are indeed the
ones needed to use a commercial estimat-
ing tool.

What is certain is that in software
development, the word size may mean
effort, programming artifacts, or elemen-
tary units of work depending on who is
using the term. This is a potential source

of confusion and miscommunication.
This article outlines a process for

mapping requirements to intermediate
units to elementary units of work, as
shown in Figure 1, and uses the resulting
output for estimating. The process is
flexible and uses historical data to tune its
algorithms.

Traditional Sizing and
Estimating
Historically, software estimating has fol-
lowed a pattern similar to the following:
• Requirements are broken down into

software elements.
• Effort-hours for the tasks to create

the software elements are estimated.
• The effort-hours are summed and a

management reserve (fudge factor) is
added to give an effort-estimate.

• Resources are leveled and a critical
path is determined that allow project
staff and duration to be estimated.

Unfortunately, this bottom-up approach
is fraught with problems:
• It underestimates the overhead

required and the non-software tasks
associated with a larger project, often
dramatically.

• Bottom-up estimating cannot be done
effectively early in the project life
cycle when bid/no bid or go/no go
decisions are made and money, time,
and staff are allocated to the effort.
There is simply insufficient detail to
determine all of the software ele-
ments, much less the project ele-
ments.

• It ignores the impact on schedule and
effort of different sized teams.
Schedule is simply effort divided by
staff.

• It does not account for the non-linear
impacts of time, cost, and quality
constraints.

• It is not suitable for rapid, cost-effec-
tive, what-if analysis.

A critical element is missing from this
approach and that element is project size.

An Alternative Approach to
Sizing/Estimating
Parametric or model-based estimating
takes the following different approach:
• It determines the size of the software

elements breaking them down into
common low-level software imple-
mentation units (IUs). (This will be
discussed in the following section.)

• It creates a model-based first cut esti-
mate using a productivity assumption
(preferably historically based), the
project size, and the critical con-
straints.

• It performs what-if modeling until an
agreed-upon estimate has been created.

• It creates the detailed plans for the
project.

Figure 2 illustrates this approach. Key to
the success of this methodology is an
accurate size and a productivity assump-
tion that is consistent with the organiza-
tion’s capabilities.

Translating Requirements
Into IUs
Customers have needs. These take the
form of requirements that software must
fulfill. Developers translate these require-
ments into intermediate units that they
must create or modify to implement the
requirements. These can be screens, pro-
grams, reports, tables, object classes,
interfaces, etc. The list is fluid.
Estimators must decompose the interme-
diate units into IUs to determine a size
for estimating.

16 CROSSTALK The Journal of Defense Software Engineering April 2005

A Method for Improving Developers’
Software Size Estimates

Lawrence H. Putnam, Douglas T. Putnam, and Donald M. Beckett
Quantitative Software Management, Inc.

Traditional software estimating is effort-based and follows a bottom-up approach. This approach does not show the impact of
different team sizes or the impact of schedule, cost, and quality constraints. The authors propose a method that decomposes pro-
gramming artifacts into elementary units of work that form the size used for model-based estimating. The process is simple to
implement, flexible, can be tuned with actual project performance data, and fosters developer buy-in by involving them in the
estimating process.

Units of Need Intermediate Units Units of Works

Need
Development

Process Product

Figure 1: Development Process

April 2005 www.stsc.hill.af.mil 17

A Method for Improving Developers’ Software Size Estimates

Conceptually, an IU is the lowest level
of programming construct that a soft-
ware developer performs. It will vary in
form depending on what is being devel-
oped. It could be setting a property on a
Web form, indicating the data type of a
field on a database table, or writing a line
of procedural code. In each case it is the
most elementary activity that the devel-
oper performs. Intermediate units are the
tangible results of several or many IUs.

Two traditional size measures for esti-
mating are source lines of code and func-
tion points. Both of these can work in
some cases; however, each has limita-
tions. The lines of code that a project
generates are strongly influenced by the
software languages used, individual cod-
ing style, and organizational standards.
They are a measure of output that can be
difficult to estimate.

Function points can be estimated
from requirements and design docu-
ments but require training in the function
point methodology and actual counting
experience that many organizations lack.
Function point counting is also a manual
process that requires an investment of
time and effort to perform. Although
there are software tools that can capture
the results of a function point count,
there are none certified by the
International Function Point Users
Group as being capable of conducting
the count.

An Alternative Sizing Approach
Here is a process for obtaining a size esti-
mate that is conceptually simple, easy to
implement, and encourages developer
buy-in:
• Hold a facilitated session with the

developers. Have them identify all of
the intermediate units that they have
to create. Determine what they physi-
cally have to do to create them. Ask if
there are other things that they have
to create on other projects. The pur-
pose here is to establish a compre-
hensive list of the artifacts the devel-
opers may create. Good interviewing
skills are the key to success here. Ask
follow-up questions and keep asking
if there is anything more. Developers
may take some time to warm to this
approach, but asking people to talk
about themselves and what they do is
a time-tested method of keeping a
conversation going!

• For each item, have them define in
quantifiable terms what makes that
item simple, average, or complex. For
instance, a simple screen might only
have retrieval capability, while an aver-

age screen would also allow data
entry. A complex screen would have
update and delete capabilities, as well.
Record the intermediate units in both
effort-hours and IUs, which may be a
ratio of effort at this stage. It is espe-
cially important to have several devel-
opers involved in this. Individual pro-
ductivity can vary significantly
between individuals, which influences
their perspectives. Also, having the
group of developers determine effort
ranges will help balance overly opti-
mistic and pessimistic estimates and
help create buy-in.

• Construct a sizing worksheet that
captures the results of the session.
Figure 3 is a simple illustration of this
concept.

• For a medium-size project with a
small team, this process will normally
take between four and six hours with
between four and eight developers;
this is where you get buy-in from the
developers. Very large projects may
well require additional time, but the
method remains the same.
Figure 3 is an example of a sizing

spreadsheet. Using the intermediate units
specified by the developers during the
interview for this particular project type,
data has been captured for a hypothetical
project. The intermediate units that the
developers have identified as being in their
environment are in the first column. The
second column contains the developers’
estimate of the average hours required to
create each intermediate unit. The IUs in

Agreed Estimate

Requirements

Software Elements Σ=Size

Productivity
Assumption

First-Cut
Estimate

"What-If "
ModelingDetailed Planning

and Execution

Resources
and Constraints

Figure 2: Alternative Sizing and Estimating Approach

Figure 3: Sizing Spreadsheet Example

Intermediate Units
Effort
Hours IUs Count

Total
IUs

Total
Effort

Forms - Simple 8 70 0 0
Forms - Average 15 170 8 1,360 120
Forms - Complex 30 400 0 0
New Report - Simple 13 140 0 0
New Report - Average 32 300 8 2,400 256
New Report - Complex 42 440 0 0
Changed Report - Simple 10 90 0 0
Changed Report - Average 24 250 4 1,000 96
Changed Report - Complex 31 320 0 0
Table Changes - Simple 5 60 0 0
Table Changes - Average 13 140 10 1,400 130
Table Changes - Complex 20 220 0 0
JCL Changes - Simple 1 12 0 0
JCL Changes - Average 4 50 0 0
JCL Changes - Complex 6 70 0 0
SQL Procedures - Simple 1 14 0 0
SQL Procedures - Average 10 140 0 0
SQL Procedures - Complex 20 225 0 0

6,160 0
Total Effort Hours

602

V

Total Implementation Units

Total Effort Hours

Figure 3: Sizing Spreadsheet Example

the third column are a weighting factor for
each intermediate unit. If empirical data
from other sizing spreadsheets is unavail-
able or if this is the first time this activity
has been conducted, the IUs may simply
be a multiple of effort. Column four con-
tains the number of a particular interme-
diate unit that a project is estimated to
have. The fifth column is the total esti-
mated IUs for the intermediate unit.
Column six is the total estimated effort-
hours to create the intermediate units.

This is only a starting point and the
IUs will be fine-tuned if required later in
the process. If the developers have the
project effort and intermediate units from
a recently completed project, this is an
excellent time to validate the estimated
effort-hours on the worksheet. For
instance in Figure 3, the total effort hours
for the project were 602 to create the list-
ed intermediate units. If the actual project
hours of the project from which this was
modeled were close to this, it lends cre-
dence to the effort estimates provided for
the intermediate units. If not, it may indi-
cate that adjustments need to be made to
the effort estimates for the intermediate
units or that there were intermediate units
that should have been included in the

project, or excluded.

Creating Estimating Templates
While interviewing the developers, it is
important to have them define their proj-
ect types. These may be as simple as
small, medium, and large based on esti-
mated effort hours. They may be plat-
form-based such as Web, client server, or
mainframe projects. They can also be
application-specific or customer-specific.

Have the developers define what
types of intermediate units are typical for
each project type and a range of how
many are normally found. Ask them to
identify the effort range associated with
each project type and identify typical
durations. Tailor the estimating spread-
sheets to each project type so they
include only the intermediate units that
project type is likely to have.

At this point the estimator can use the
estimated size in IUs to create a template
and calculate time, effort, and cost with a
commercial parametric estimating tool.

Tuning the Process
The templates created in Figure 3 are
starting points and will need to be fine-
tuned. They are based on assumptions

about the number of IUs per intermedi-
ate unit. How can this be refined? One
method is to model completed projects
using the sizing information captured on
the templates as inputs to a parametric
estimating tool. In this situation, project
effort and duration are already known
and there is an estimated size in IUs. The
variable to be determined is the produc-
tivity parameter required to re-create an
estimate scenario whose effort and dura-
tion match the completed project. This is
a relatively easy thing to do with a para-
metric estimating tool. Even though
solving a calculation for a missing vari-
able will produce a result, it does not
guarantee that the result is realistic. It is
important to verify that the productivity
parameter is reasonable when compared
to industry data or organizational history.

Figure 4 demonstrates a method of
comparing an estimate scenario to histor-
ical data to see if that scenario is inter-
nally consistent and reasonable. There
are two graphs in Figure 4. Each has a set
of trend lines calculated from a database
of over 6,200 software projects. The
darker line in the middle is the average.
The dotted lines represent plus and
minus one standard deviation, respec-
tively. Note that a logarithmic scale is
used to account for the non-linear rela-
tionship between project size and effort
or duration. The X axis of both charts is
project size in IUs. The Y axis on the top
chart is project effort in manhours.

In this case, the effort-hours for the
project (represented by the square) are
slightly below the average line for similar-
ly sized projects. The Y axis of the lower
chart is project duration in calendar
months. This project falls right on the
average line. For this estimate scenario,
both effort and duration are historically
consistent with similar sized projects.

The productivity parameter used is
also historically consistent1. If the effort
were very high compared to the trend
lines, it could indicate that the IUs were
understated (too much effort for the
amount of output). Extremely low effort
compared to the trend lines would sug-
gest that the IUs were overstated.

Similar comparisons apply for the
bottom graph, too. If after modeling sev-
eral projects, effort, duration, or both are
consistently very high or very low, then it
is a strong indication that the number of
IUs for some of the intermediate units
requires adjustments.

Sizing templates can be further
refined as projects complete. There is
one final word of caution to consider
when modeling projects: The projects

Cost Estimation

18 CROSSTALK The Journal of Defense Software Engineering April 2005

Validate Estimate
Effort versus Effective Implementation Units

1,000 10,000
Effective Implementation Units

100

1,000

10,000

E
ffo

rt
(M

H
R

)
Duration versus Effective Implementation Units

1,000 10,000
Effective Implementation Units

1

10
D

u
ra

tio
n

(M
o

n
th

s)

Figure 4: Comparing an Estimate to Historical Data

A Method for Improving Developers’ Software Size Estimates

April 2005 www.stsc.hill.af.mil 19

should be as normal and representative
of the work usually done as possible. The
intent is to build a model that reflects
how work is usually done. Projects with
cherry-picked teams or ones that suf-
fered from extreme schedule pressure or
rework due to requirements changes are
not good candidates to model. They will
only skew the results.

Benefits
As Frederick Brooks [1] warned us near-
ly 30 years ago, there is no silver bullet.
This approach to sizing may not be the
best fit for every software development
situation. But, it will work in many situa-
tions and has some real benefits:
• It speaks the developer’s language. It

describes the system in the compo-
nents that developers work with:
screens, reports, tables, programs,
and Web pages. This improves com-

munication.
• It involves the developers in the esti-

mating process creating buy-in and
reducing the chance of obtaining
bogus data.

• It is adaptable. It allows new tools and
components to be incorporated easily.

• It is an excellent way to get a handle
on a new technology. It provides the
ability to articulate what and how
developers build a product.

• It is applicable to many different
development paradigms, some of
which have been difficult to estimate
with parametric estimating tools:
o Enterprise Resource Planning

(PeopleSoft and SAP [Systems,
Applications, Products]).

o Rational Unified Process.
o Traditional Development.

• It can (and should) be tuned on actu-
al project data.

If you are running into roadblocks
when estimating the size of your applica-
tion development projects, give this
method a try. You might be pleasantly
surprised by the cooperation that you
receive from the technical staff, and the
increased value that is attached to your
end-product estimates.u

Reference
1. Brooks, Frederick. The Mythical Man-

Month: Essays on Software Engineer-
ing. Addison-Wesley, 1 Jan. 1975.

Note
1. Estimating tools look at productivity

from different perspectives. What is
important is that however productivi-
ty is measured, there needs to be a
method in place to validate it for rea-
sonableness against organizational or
industry data.

About the Authors

Douglas T. Putnam is
the managing partner of
Professional Services at
Quantitative Software
Management, Inc. (QSM).
Putnam has over 24 years

of experience in the software measure-
ment industry. He has written and lec-
tured extensively throughout the world
and has participated in more than 200
estimation and measurement engage-
ments in his career at QSM. QSM is the
supplier of the trademarked SLIM suite:
SLIM-Estimate, SLIM-Master Plan,
SLIM-Control, SLIM-Metrics.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean,VA 22101
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: doug_putnam@qsm.com

Lawrence H. Putnam is
the founder and chief
executive officer of
Quantitative Software
Management, Inc., and a
developer of commercial

software estimating, benchmarking, and
control tools known under the trade-
mark SLIM. He served 26 years on active
duty in the U.S. Army and retired as a
colonel. He has been deeply involved in
the quantitative aspects of software
management for the past 30 years. He is
the co-author of five books on software
estimating, control, and benchmarking.
He is a member of Sigma Xi, the
Association for Computing Machinery,
the Institute of Electrical and Electronic
Engineers (IEEE) and the IEEE
Computer Society. He was presented the
Freiman Award for outstanding work in
parametric modeling by the International
Society of Parametric Analysts. Putnam
has a Bachelor of Science from the
United States Military Academy and a
master’s degree in physics from the
Naval Postgraduate School.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean,VA 22101
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: larry_putnam_sr@qsm.com

Donald M. Beckett is a
consultant for Quantita-
tive Software Manage-
ment with more than 20
years of software devel-
opment experience, in-

cluding 10 years specifically dedicated to
software metrics and estimating. Beckett
is a Certified Function Point Specialist
with the International Function Point
Users Group and has trained over 300
persons in function point analysis in
Europe, North America, and Latin
America. He was a contributing author
to “IT Measurement: Practical Advice
from the Experts.” Beckett is a graduate
of Tulane University.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean,VA 22101
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: don_beckett@qsm.com

