
SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 1
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

Quantitative Software Management

MEASURES FOR EXCELLENCE

SIZING

AND

CONTROLLING

INCREMENTAL

SOFTWARE DEVELOPMENT

J. Greene
QSM Ltd

5 Haarlem Road
Brook Green

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 2
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

London W14 0JL
Tel : 44-171-603-9009
Fax : 44-171-602-6008

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 3
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

Introduction

Traditional software development methods are increasingly being supplemented
by a variety of forms of incremental development. In this paper we set out the
major forms and discuss the approaches to estimating their size as well as
controlling their development progress.

The need to clarify the form of incremental development arises because of the
associated risk especially when estimating the time and effort. The simple
statement “incremental development” needs to be qualified to identify more
precisely the proposed development process. Such definition in turn allows a
clearer understanding of the possible ways of estimating and controlling
progress.

In Figure 1 below are outlined the four major development scenarios based on
the four basic phases of specification, design, main software build and
acceptance.

Development Scenarios

Func. Spec. Design Main Build Acceptance

Func. Spec. Design Main Build Acceptance

Func. Spec. Design Main Build Acceptance

Func. Spec. Design Main Build Acceptance

Waterfall

Incremental Build

Incremental Design

Incremental Development

Figure 1 : Software Development Scenarios

The traditional waterfall model of development offers less scope to reduce the
time to make delivery of parts of a new system. However it does offer the

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 4
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

advantage of defining what has to be developed as well as enabling a complete
design to be made that meets the full requirements. This approach minimises
risk with respect to the requirements and the associated design.

In contrast incremental development as shown in Figure 1 is very high risk. This
is due to incomplete specifications and, as a consequence, the associated
design uncertainty that can result in altering earlier increments. Without
knowing the full requirement it becomes increasingly difficult and dangerous to
develop a design that meets later unknown requirements.

Between these two extremes are two other forms : incremental build and
incremental design.

Incremental build assumes the overall specification and design are complete.
This results in increased confidence that the development will meet user
requirements with an overall design that supports the full system. Hence there is
reduced risk of the overall design not working or unknown requirements changes
appearing to cause earlier increments to be thrown away.

Incremental design assumes a complete specification but now each increment
progresses the design. This increases the risk of significant design revisions if
the new design increment reveals shortcomings in the earlier design elements.

It is our observation that “incremental “ is often synonymous with “iterative” and
“prototyping”. Hence these other forms of development can be treated in a
similar way in order to clarify the implications regarding sizing, estimating and
control.

Objectives

In this paper we set out the consequences of each of the possible software
development scenarios in order to examine their consequences on estimation
and control.

Our objectives are to :
• highlight the risk associated with each development scenario
• show how the size of the software can be quantified as an input to

development estimation and control
• specifically show how each increment can be sized and the associated

uncertainty determined
• demonstrate how to use the increments and their sizes to track and monitor

development progress

Software Sizing

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 5
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

Size is a key measure as an input to determine the time and effort to develop
software. (Ref. 1) Equally tracking progress during development makes use of
the size and status of the software at any given point. (Ref. 3)

The metrics used for sizing software can be any of a wide variety of measures
such as effective lines of code (ELOC), source statements (SS), logical input
statement (LIS), components, objects or function points where business systems
are being developed. Logical Input Statements, LIS, clarify what is being
estimated and tracked when none procedural languages (for instance fourth
generation languages) are being used.

Again guidelines exist to give consistent ways of quantifying the size of software.
(Refs. 2, 4 and 5)

QSM use this size information to quantify the risk when estimating the time and
effort to build software. We do this by requiring the size range to be estimated
for each sub-system or module to be developed. Hence the size range inputs
for a given development are expressed as shown in Figure 2.

Re-used / package
software

New / modified
software

Subsystem SS/LIS Original % to be Estimated size
SS/LIS/FP range

Name /
Number

Language size
SS/LIS/FP

modified Min Most
likely

Max.

Figure 2 : Sub-system Size Range Estimates

Referring to Figure 2 each sub-system is identified that corresponds to a
functional area of the specification.

The development language to be used for implementation allows gearing factors
to be determined for size range estimates given in forms other that ELOC or LIS.
The gearing factor associated with each sub-system and language is then used
to compute the expected size range in ESLOC or LIS.

Reused software identifies existing software that is to be modified and extended.
The sub-system functionality may be met completely from existing “off the shelf”
software. Today we find very few completely new software developments. Most
developments are extensions of existing systems that require sub-systems to be
modified or extended.

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 6
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

The sub-system size is expressed as a size range determined from the
specification. Where detailed specifications are available then the sub-system
size range may be expected to be relatively small. On the other hand if the
specifications lack detail in certain areas then the range may be wide.

These size uncertainties are used to quantify risk when estimating development
time, effort, cost and reliability. Equally the size estimates and their uncertainty
bounds provide the means of tracking progress as the software is being built.
We normally suggest sub-systems are broken down wherever possible so that
the most likely size does not exceed 3000 ELOC.

Sub-system Increment Dependence

When incremental or iterative developments are planned then the table shown in
Figure 3 is used to identify which sub-systems are to be realised in a given
increment. The percentage of subsystem code estimated for each iteration
allows identification of :

• increments that consist of a collection of entire sub-systems, in this case each
sub-system is quantified as 100%

• increments that are made up of parts of sub-systems, here each sub-system
is estimated as a percentage of the total sub-system size

Sub-
System

Iteration/Increment Number -
Percentage of Sub-System Size

Total Sub-System Size
Range

Number 1: % 2: % 3: % 4: % 5: % 6: % Min Likely Max.

Figure 3 : Increment Dependency Table

Note that where increments are identified as consisting of a number of partial
sub-systems this can mean that the first increment code of a given sub-system is
expected to be revised and extended for following increments. This in turn
implies that the initial code can probably be expected to be changed as later
increments are developed and hence re-testing can be expected for the growing
number of earlier increments and the changed sub-systems .

Increment Sizing

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 7
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

From the information given in Figure 3 it is possible to sum the total size range
for each increment. Figure 4 sets out the simple form that captures the total size
range of each increment.

This then becomes the basis for the high level tracking of the development of a
given increment. The start date and end date of the increment plus the size can
be used to monitor progress and determine the overall project progress.

Increment Planned Date Size Range
Number Start End Min Likely Max.

1
2
3
4
5
6

Figure 4 : Increment Plan and Size Range

An Instance of Increment Progress Tracking

To illustrate the use of the increment tracking we show in Figure 5 an example of
following the progress of a development at the increment level using one of the
QSM automated tools, SLIM-Control.

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 8
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

INCREMENT 1 (Cum)

0

2

4

6

8

10

12

14
S 1 2 3 4 5 6 7 8 9
S 1 2 7 8 9

IN
C

1 (thousands)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 *

Increment Plan :
Code Production

Reported
Cumulative Size

Size
R

ange
B

ounds

Out of
Bounds
Traffic
Lights

Months

PLANNED INCREMENT : SIZE VERSUS TIME

Increm
ent Size :

(T
housands E

L
O

C
)

Figure 5 : Tracking an Increment

Distributed and Incremental Development : What Is a Software Project

Our work estimating and controlling software development involves a further
variant that occurs in large organisations that have geographically separated
sites. In these developments parts of an entire system are developed at one
location while other parts are developed at different locations.

We are frequently asked “What is a Software Project”? under these conditions.
The same question applies to software increments namely : “Is the project each
part or increment at each location or is it the integration and testing of all the
parts or increments?”.

For us the test is “Can a given part or increment be independently tested and
accepted for operation?

If the answer is yes then the part or increment is treated as a project in its own
right. Each part or increment is estimated and controlled separately including
independent operational delivery and acceptance.

If the answer is no, then the sum of all the parts or increments is the project and
each part or increment has to be integrated with other software before

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 9
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

independent testing and final operation. In this case the entire project is
estimated for the sum of all the parts. However progress is tracked at the
individual sub-system and increment level as well as the total for all the parts.

Risk Assessment

The development scenarios set out in Figure 1 are shown risk assessed in Table
1 below. As well as reflecting the risk from an incomplete design the table takes
in to account the coupling between sub-systems and increments.

Higher risk arises where an increment is made up of sub-systems that are
subsequently modified. The modified sub-system developed for a later
increment means the original increment must be regression tested to ensure the
initial code is still correct.

Waterfall developments represent the lowest risk. Incremental build is equally
low risk except when increments are developed using parts of sub-systems.
This partial development of sub-systems leads to increased risk of rework.

Incremental design increases the risk that the partial design may not satisfy later
increments resulting in earlier work being scrapped and redone. Again this risk
increases where increments require re-work of part completed sub-systems.

Incremental development is entirely high risk. It assumes functional
specifications and design are extended with each “increment”. Hence there is
no guarantee that the entire development will work. Equally it is only possible to
estimate and control each increment treating each as a project.

Estimating and Controlling Development : Risk
SCENARIO SPECIFICATION DESIGN SINGLE/MULTIPLE SITE

WATERFALL LOW LOW LOW

INCREMENTAL LOW LOW LOW/MODERATE
BUILD

INCREMENTAL LOW MODERATE/HIGH HIGH/VERY HIGH
DESIGN

INCREMENTAL HIGH VERY HIGH VERY HIGH
DEVELOPMENT

Table 1 : Development Scenario Risks

Observations

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 10
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

Incremental “developments” offer advantages but carry risks. When considering
the forms of development we find that it is beneficial to clarify the specific type of
incremental approach being planned.

In many small business systems with low design complexity even the high risk
incremental development is practical in order to meet tight development time
scales. As the size and complexity of the development grows there is an
increasing risk that the rework of the design may lead to software being re-
written.

In addition the interdependency of increments and sub-systems has to be taken
in to account when evaluating risks. There are fewer risks if an increment is
made up of entire sub-systems that are not changed once developed.

Where increments are composed of elements from various sub-systems then
more risk of rework arises. The later increments can require that the earlier
code is amended and re-tested together with all the associated sub-systems in
the earlier increment. We have found situations where this interdependency is
so high that the final development resembles the traditional waterfall model in all
essential respects.

From a software development estimating view point it is practical to consider the
overall project as a single development for the waterfall model and for each of
the incremental builds and incremental designs. However these last two need to
be qualified by careful consideration of the interdependencies of increments and
sub-systems. Where high interdependency occurs then the development
resembles the traditional waterfall model requiring reintegration and re-testing as
the increments and sub-systems grow.

Distributed development over separate sites can be treated as increments in the
same way with the qualification that each increment may be a separate project in
its own right if it can be tested and accepted for independent operation. If all
parts have to be integrated and tested together before independent operation
then these are parts of a single development.

Where increments or parts are developed then these can be quantified, planned
and tracked as part of a project.

To underline the risks that are associated with incremental development it is
worth quoting the experience of an informed purchasing organisation regarding
the problems they have encountered when dealing with suppliers.

“Do not track chaos. Sometimes suppliers call it incremental or parallel
development or sometimes even prototyping. It all means that suppliers do not
(yet) know what they are doing or where they are aiming.” (Ref. 6)

SIZING AND CONTROLLING
INCREMENTAL SOFTWARE DEVELOPMENT

PAPER96 Page 11
Copyright J. Greene QSM Ltd 5 Haarlem Road Brook Green London W14 0JL

Ref. 1 : Putnam L.H & Myers W Measures For Excellence Prentice Hall
ISBN 0-13-567694

Ref. 2 : SEI Software Size Measurement with Application to Source
Statement Counting : Carnegie Mellon Size Subgroup Software
Metrics Definition Working Group Draft August 1991

Ref. 3: Carleton A.D., Park R.E., Goethert W.B, SEI Core Measures: Journal of
the Quality Assurance Institute July 1994

Ref. 4 : Handboek van de Nederlandse Software Metrieken Gebruikers
Associatie- Standaarisatie Definities/Telrichtlijnen FPA

Ref. 5 : KPN logistics Handboek Software Control Management : Kempff G.K
Ref. 6 : Kempff G.K. Presentation at QSM European User Conference May 1996

