
IMPLEMENTATION OF A SOFTWARE PROJECT OFFICE AT

HONEYWELL AIR TRANSPORT SYSTEMS

by Michael A. Ross

Abstract. This paper justifies, defines and describes an organization-level
software project management process concept called a Software Project
Office (SPO). The paper begins by describing the context of software
development and software project management within Honeywell Air
Transport Systems. It then provides the SPO justification, definition, and
description. The SPO justification is based on the work of Tom DeMarco in
Controlling Software Projects. The SPO definition (specification of
requirements) is presented within sample policies for the Software
Engineering Institute (SEI) Capability Maturity Model (CMM) Key Process
Areas (KPAs) of Software Project Planning and Software Project Tracking
and Oversight. The SPO description focuses on the Honeywell Air Transport
Systems implementation of this concept.

INTRODUCTION

Purpose

This paper justifies, defines, and describes an organization-level software project
management process concept called a Software Project Office (SPO) and describes the
implementation of this concept at Honeywell Air Transport Systems, Phoenix, Arizona.

Scope

While the scope of actual experience upon which this paper is based is limited to
Honeywell Air Transport Systems and Dutch PTT Telecom, the concept is applicable to any
organization committed to implementing the SEI CMM Level 2 KPAs for Software Project
Planning and Software Project Tracking and Oversight.

Background

In 1989 Honeywell Air Transport Systems (ATS) embarked on a program of Continuous
Quality Improvement (CQIP) in order to perpetuate their viability as a world leader in the
development and production of commercial avionics. One result of this program was the
establishment of overall cost, cycle time, and quality objectives.

Concurrent with the formation of CQIP, an outside evaluation of Honeywell ATS software
development was performed. This evaluation was done within the framework of the SEI
CMM where, on a scale of five levels where five represents most mature, Honeywell ATS
was evaluated at Level 1, “The Initial Process.” [Humphrey, 1989]

2

Following the evaluation, Honeywell ATS redesigned its organization to meet the
challenges posed by the above-mentioned issues. Part of this reorganization included the
formation of an Integrated Product Development (IPD) directorate with subordinate
Processes and Tools departments. The Processes department eventually evolved into the
Systems and Software Engineering Process Group (SSEPG).

Activity within the SSEPG is currently centered around achieving SEI CMM Level 2. This
effort and the lessons learned from the Boeing 777 Aircraft Information Management
System program (1990 through 1995) have together illuminated a critical need for a
systematic software project management process.

HONEYWELL ATS DEVELOPMENT PROCESS

Process Overview

The Honeywell ATS product development process (see Figure 1) provides the context
within which a successful Honeywell ATS software project management process must
operate. Note that each of the development process’s software-related constituent
processes are assigned to one of four life cycle categories: Feasibility Study, Functional
Design, Main Build, and Operations & Maintenance.

Feasibility Study (Software)

The objectives of the activities within this life cycle category are to develop a complete and
technically feasible set of requirements for the system and to formulate the top level
approach and plan for their implementation. Typical products resulting from these activities
include: (1) a system specification, statement of need, or list of capabilities that the user or
the marketing organization expects from the system, or a marketing specification; (2) a
feasibility study report or an assessment of whether the need can be met with the available
technology in a timely and economic manner; and (3) a set of plans documenting the
project management approach to development, quality assurance, configuration
management, verification, etc. [Putnam-Myers, 1992]

Functional Design (Software)

The objectives of the activities within this life cycle category are to complete the system-
level design by choosing the appropriate constituent technologies (hardware, software,
etc.) and to allocate each system-level requirement to the appropriate technology.
Software requirements are defined. The software top-level architecture is defined. Typical
products include the following: (1) specifications defining the interfaces between the
system-level components; (2) software requirements specifications describing the inputs,
processing (logic and/or algorithms), and outputs; and (3) updated project plans [Putnam-
Myers, 1992].

3

Support Activities

D07

Develop &
Validate System

Requirements

D01

Analyze System
Safety

D12

Develop System
Design

D02

Feasibility Study

Develop &
Validate Hardware

Requirements

D04

Develop &
Validate Software

Requirements

D03

Create Formal SW Test Plans,
Requirements, Procedures, and

Scripts

D07-1

Create Formal HW Test Plans,
Requirements, Procedures, and

Fabrication

D07-2

Perform Software
Architecture

Design

D05

Perform Software
Detail Design and

Coding

D08

Perform Hardware
Detail Design

D09

Fabricate / Update
Pre-Black-Label

Hardware

D13

Operations &
Maintenance

Functional
Design

Authorization to
Proceed

Perform Systems /
Software /
Hardware
Integration

D11

Perform
Certification

Activities

D18

Main Build

Perform Project Management Activities

D20

Perform Formal
Requirements
Based Testing

D15

Perform Hardware
Verification and

Qualification
Testing

D16

Perform Additional
Structural
Coverage

D17

Operations &
Maintenance

Provide Technical Publications Documentation

D14

Create Guides and Manuals

D10

Input from
Software &
Hardware

Input from
Software &
Hardware

Quality Assurance
Activities

D21

Support Systems
Logistics Activities

D22

Establish
Development &

Verification
Environment

D24

Evolve
Technologies and

Processes

D23

Miscellaneous
Projet Activities

D25

Figure 1 Honeywell ATS Product Development Process [Senechal, 1995]

Main Build (Software)

The objectives of the activities within this life cycle category are to implement the software
requirements as defined by the products of the Functional Design category. Once the
software requirements have been baselined, the activities in the Software Main Build
category implement these requirements through detailed software design, coding, and
integration. Typical products include: (1) design documentation; (2) verification (review
and inspection) documentation; and (3) a full-functionality software product for which 95%
of the total defects have been found and fixed [Putnam-Myers, 1992].

Operation & Maintenance (Software)

The objective of the activities within this life cycle category is to provide the customer base
with product support once the system is operational. The principle activities within this
category include: (1) increased reliability and assurance testing; (2) correction of latent
defects; (3) new enhancements; (4) modification and tuning of the system; and (5)
operation support. Typical products include: (1) testing documentation; (2) user manuals
and other operating documentation; (2) maintenance manuals; and (4) other certification-
related documentation [Putnam-Myers 1992].

4

SOFTWARE PROJECT OFFICE JUSTIFICATION

One of the keys to advancing from SEI CMM Level 1, “The Initial Process” to Level 2, “The
Repeatable Process” is software project management [Humphrey, 1989]. Two of the five
Key Process Areas (KPAs) associated with SEI CMM Level 2 are directly related to
software project management. The first KPA is Software Project Planning. The second
KPA is Software Project Tracking & Oversight; also referred to in this paper as
“control”. Additionally, a third KPA associated with Level 2, Software Subcontract
Management, draws from an organization’s planning and control approach.

The Software Project Office concept provides dedicated, centralized, and independent
execution of the planning and control aspects of an organization’s software project
management process. Comprehensive project management includes much more than
planning and control (e.g., recruiting, organizing, training, equipping, and terminating).
Therefore, it is important to note that the Software Project Office is not intended as a
replacement for traditional software project management but rather as an enhancement to
two traditional software project management activities.

Need for Dedication

Planning and control expertise is experience driven. Skills must be developed over time
and with much practice. Line engineers are primarily concerned with getting products “out-
the-door” and have neither time nor opportunity to practice these skills [DeMarco, 1982].
Because planning and control activities are the primary concern of the Software Project
Office analysts, they do have time and opportunity to practice.

Need for Centralization

A centralized approach to planning and control is good for the following reasons:

• While the primary goal of planning and control is to support individual projects, it
must also provide aggregate information to organization-level management in
order to support the strategic decision-making process. A centralized approach
can support this goal more efficiently and consistently than can a distributed
approach.

• Economies related to tools procurement, tools development, tools and methods
training, technology consulting, and external interfaces with industry and
academia can be realized with a centralized approach.

• A centralized approach will better support the creation and maintenance of an
organization-wide historical data repository.

Need for Independence

An independent approach to planning and control (one that minimizes adverse political
influence from product-line organizations) is good for the following reasons:

5

• It is a conflict of interest to have the same people responsible for planning and
control also be responsible for the work itself. While the planning and control
processes must rely heavily on product-line personnel to collect data, the
analysis of that data is best left to personnel not involved in the project being
measured. The dispassionate judgment required to analyze the data and to
make reasonable projections is compromised by ego involvement in
performance when the same people do both [DeMarco, 1982].

• The value of planning and control outputs will suffer if, due to reporting
relationships, they can be influenced by people with a stake in the outcome
[DeMarco, 1982].

• The product-line development and Software Project Office processes have
different goals and, therefore, should have different and independent evaluation
criteria. Developers should be evaluated based on the level of success of the
project. Software Project Office analysts should be evaluated based on how
quickly their projections converge with what actually happens on projects and
should have no stake in the success or failure of the project. It should be
possible for Software Project Office analysts to be successful even though the
project turns out to be a failure if that failure has been predicted in a timely
fashion [DeMarco, 1982]. Likewise, it should also be possible for Software
Project Office analysts to receive low marks on a successful project if that
success has not been predicted in a timely fashion.

SOFTWARE PROJECT OFFICE DEFINITION

The following subordinate paragraphs contain sample organizational policies for software
project planning and for software project tracking and oversight. They are included here as
a vehicle for defining the Software Project Office and its role in supporting the management
of software projects.

SW Project Planning Policy

Purpose

The purpose of Software Project Planning is to establish achievable plans for performing
and managing software development [Paulk 1 et. al., 1993].

Software Project Planning involves developing estimates for the work to be performed,
establishing the necessary commitments, and defining the plan to perform the work [Paulk
2 et. al., 1993].

Software Project Planning begins with a statement of the work to be performed and the
goals and constraints that define and bound the software project (those established by the
practices of Requirements Management). The software planning process includes steps
to estimate the management measures (size, time, cost/effort/staffing, reliability,
productivity, and manpower buildup), identify and describe the activities to be performed,

6

identify and assess risks and opportunities, and negotiate commitments. Iterating through
these steps may be necessary to establish a baseline plan. This plan is referred to as the
Software Development Plan (SDP) [Paulk 2 et. al., 1993].

The SDP documents the commitments made to the software project’s customer and
provides the basis for managing the software project’s activities [Paulk 2 et. al., 1993].

Scope

This policy applies to all {company name} software development projects unless excluded
by the Vice President of Engineering.

Requirements

Requirement 1

The Program Manager shall, for each software project within the program, identify a
Software Project Manager. The Software Project Office Manager shall, for each
software project within the program, select from within the Software Project Office, a
Software Project Analyst.

Requirement 2

The Software Project Manager and the Software Project Analyst shall, based on a
Statement of Work, the program’s constraints, and those system requirements that have
been allocated to software (software requirements), provide baseline
estimates/assumptions for the following management measures:

• Lowest Size, Highest Size, and Expected Size (Effective Source Lines of
Code, Normalized Module Units, Function Points, or other size unit)

• Start Date, Finish Date, and Duration (months) of the four macro-level
development categories:

1. Feasibility Study (System Requirements Definition and Project Planning)

2. Functional Design (System Design, Software Requirements Definition,
and Software Architecture Design)

3. Software Main Build (Software Detail Design, Coding, and Integration)

4. Maintenance (Exposure, Problem Fixing, Assurance Testing, and
Certification Support)

• Cost (cumulative $ over time), Effort (cumulative person-months over time), and
Staffing (headcount over time) for each of the four macro-level development
categories listed above

• Reliability (Mean Time to Defect over time) and Cumulative Defects Over
Time

7

• Productivity (the constant of proportionality that relates size, time, and effort)

• Manpower Buildup Rate (the constant of proportionality that relates time and
effort independent of size)

The Software Project Manager shall, for each management measure, determine the green-
to-yellow and the yellow-to-red control bounds including a description of the corrective
actions to be taken at each status transition.

Requirement 3

The Software Project Manager shall negotiate and document commitments
(milestones) established with the Program Manager and with other organizations (internal
and external) associated with the program. These commitments shall be consistent with
the estimates developed in Requirement 2 above. The following information shall be
provided for each commitment:

• a unique identifier;

• a description of the commitment made and to whom;

• a list of the activities upon which this commitment is dependent (see
Requirement 4); and

• an agreed-to date on which this commitment will be satisfied.

The Software Project Manager shall, for each commitment date, determine the green-to-
yellow and the yellow-to-red control bounds including a description of the corrective
actions to be taken at each status transition.

Requirement 4

The Software Project Manager shall, for each of the four macro-level development
categories listed in Requirement 2 above, develop a list of all the activities that must be
completed in order for the associated category to be considered complete. The following
information shall be provided for each activity:

• a unique identifier;

• a description of the activity that includes methods, tools, required skills and
training, and procedures (sequence of events);

• a list of the items consumed by this activity;

• a list of the items produced by this activity;

• a specification of the method for earning value;

• a specification of the completion criteria;

• an indication of priority relative to the priorities of other activities;

8

• a list of the activities upon which this activity is dependent and the nature of
each dependency (start-start, start-finish, finish-start, finish-finish with overlaps
and gaps specified);

• an estimate of the activity’s duration;

• an estimate of the effort required to complete the activity; and

• an estimate of the activity’s cost.

Requirement 5

The Software Project Manager shall develop a list of risks and opportunities. The
following information shall be provided for each risk/opportunity:

• a unique identifier;

• a description of the issue;

• an estimate of the cost/benefit of occurrence;

• an estimate of the probability of occurrence;

• a description of the key measure(s) that will be used to monitor the
risk/opportunity along with the green-to-yellow and the yellow-to-red control
bounds including a description of the corrective actions to be taken at each
status transition; and

• a description of any potential risk mitigation or opportunity enhancement
strategies, the estimated cost of those strategies, the estimated impact on the
risk/opportunity probability of occurrence, and the circumstances under which
they will be employed.

Requirement 6

The Software Project Manager shall create a Software Development Plan (SDP) that
includes all the information developed in Requirements 2, 3, 4, and 5 above. The SDP
shall also include the frequency with which Software Project Tracking and Oversight will be
performed.

Requirement 7

The Program Manager shall conduct a review of the SDP. Representatives of all affected
organizations shall be present.

Requirement 8

The SDP shall be managed and controlled throughout the life cycle. Managed and
controlled implies that the version of the SDP in use at a given time (past or present) is
known (i.e., version control), and changes are incorporated in a controlled manner (i.e.,
change control).

9

SW Project Tracking and Oversight Policy

Purpose

The purpose of Software Project Tracking and Oversight is to provide adequate visibility
into actual progress so that management can take effective actions when the software
project’s performance deviates significantly from the software plans [Paulk 1 et. al., 1993].

Software Project Tracking and Oversight involves tracking and reviewing the software
accomplishments and results against documented estimates, commitments, and plans,
and adjusting these plans based on the actual accomplishments and results [Paulk 2 et. al.,
1993].

A documented plan for the software project (i.e., the Software Development Plan (SDP),
established by the Software Project Planning process) is used as the basis for tracking
progress, communicating status, and revising plans. Software management measures,
activities, risks/opportunities, and commitments are periodically tracked and compared to
their corresponding planned values. When it is determined that the software project’s
plans are not being met, corrective actions are taken. This may include revising the SDP
to reflect the actual accomplishments and replanning the remaining work or taking actions
to improve performance [Paulk 2 et. al., 1993].

Scope

This policy applies to all {company name} software development projects unless excluded
by the Vice President of Engineering.

Requirements

Requirement 1

The Software Project Analyst shall use an approved version of the SDP as the basis for
tracking the software project.

Requirement 2

The Software Project Analyst shall periodically (as prescribed in the SDP) track (as a
function of elapsed calendar time) and compare the management measures to their
corresponding baseline estimates/assumptions and control bounds contained in the SDP.
The result of each comparison shall be a status determination of green, yellow, or red. The
Software Project Manager shall, as a function of status, initiate the appropriate corrective
action as stated in the SDP.

Requirement 3

The Software Project Analyst shall periodically (as prescribed in the SDP) assess each
commitment (milestone) contained in the SDP and determine an earliest possible
completion date. These dates shall be compared to their corresponding agreed-to dates
and control bounds in the SDP. The result of each comparison shall be a status

10

determination of green, yellow, or red. The Software Project Manager shall, as a function
of status, initiate the appropriate corrective action as stated in the SDP.

Requirement 4

The Software Project Manager shall periodically (as prescribed in the SDP) assess the
activities within each of the four macro-level development categories (Feasibility Study,
Functional Design, Software Main Build, and Maintenance) to determine the amount of
value earned for each category. Earned value for an activity shall be computed according
to the activity’s method for earning value contained in the SDP.

The Software Project Analyst shall periodically (as prescribed in the SDP) track (as a
function of elapsed calendar time) and compare the earned value for each macro-level
development category to its corresponding baseline estimated value and control bounds
contained in the SDP. Note that value may be expressed as dollars, person-hours, or a
percentage of the total value. The result of each comparison shall be a status
determination of green, yellow, or red. The Software Project Manager shall, as a function
of status, initiate the appropriate corrective action as stated in the SDP.

Requirement 5

The Software Project Analyst shall periodically (as prescribed by the SDP) track (as a
function of elapsed calendar time) and compare the key measures associated with each
risk and opportunity to their baseline estimates/assumptions and control bounds
contained in the SDP. The result of each comparison shall be a status determination of
green, yellow, or red. The Software Project Manager shall, as a function of status, initiate
the appropriate action as stated in the SDP.

Requirement 6

The Software Project Analyst shall periodically (as prescribed in the SDP) create a
Software Development Status Report that includes all the information gathered in
Requirements 2, 3, 4, and 5 above. Each Software Development Status Report shall
include the version of the SDP to which this report applies.

Requirement 7

The Program Manager shall conduct reviews of each Software Development Status
Report. Representatives of all affected organizations shall be present.

Requirement 8

Every Software Development Status Report shall be archived.

Software Project Office Description

The Software Project Office at Honeywell ATS (see Figure 2) is a process (methods,
tools, training, and activity flow). It provides an archive (history repository) for the
organization’s past performance. It provides history-based estimates of product size. It

11

provides a viable project plan based on these estimates and past performance. It
provides project control (tracking, forecasting, and correcting) by comparing measured
actual results to the project plan, predicting the project outcome based on to-date trends,
triggering corrective action when actuals deviate significantly from the plan, and archiving
the final results in the organization’s history repository.

Methods:
Fuzzy logic
Function points
Standard Components
New, modified, reused

Tools:
QSM® SLIM®

Training:
QSM®
Fissure

Estimate Size

Methods:
QSM® Basic Measures
Post-mortem reviews
Benchmarking
ROI analysis
Process assessments

Tools:
QSM® PADS®

Training:
QSM®

Archive

Methods:
Minimum time solution
Trade off practical

alternatives
Optimum solution that

meets constraints
Macro-level plan:

Cost
Schedule
Reliability
Risk

Tools:
QSM® SLIM®

Training:
QSM®
Fissure

Plan

Methods:
Size estimate tracking
Staff/effort/cost tracking
Earned value tracking
Milestone tracking
Code tracking
Defect tracking
Adaptive forecasting
Variance analysis

(plan, earned, actual)
Project classification

(green, amber, red)

Tools:
QSM® SLIM Control®

Training:
QSM®

Control

Estimated
Size

Macro-
level

Project
Plan

Final
Actuals

P
as

t
P

er
fo

rm
an

ce

Detail-level
Project

Management
Process

Concept
Definition
Process

R
ep

la
n

Product Attributes and Project Constraints

C
u

rr
en

t
E

st
im

at
ed

 S
iz

e

C
u

rr
en

t
M

ile
st

o
n

e
C

o
m

p
le

ti
o

n

C
u

rr
en

t
E

ar
n

ed
 V

al
u

e

C
u

rr
en

t
C

o
d

e
C

o
m

p
le

ti
o

n

C
u

rr
en

t
D

ef
ec

t
C

o
u

n
t

C
u

rr
en

t
S

ta
ff

, E
ff

o
rt

, a
n

d
 C

o
st

Figure 2 Software Project Office Process [Greene, 1990]

12

References
[DeMarco, 1982]

DeMarco, T., Controlling Software Projects: Management, Measurement,
and Estimation. New York, NY: Yourdon Press, 1982.

[Greene, 1990]
Greene, J., “Management Measures for Excellence: The Software Control
Office.” UK: QSM Ltd., 1990.

[Humphrey, 1989]
Humphrey, W., Managing the Software Process. Reading, MA: Addison-
Wesley Publishing Co., 1989.

[Putnam-Myers, 1992]
Putnam, L. & Myers, W., Measures for Excellence: Reliable Software On
Time, Within Budget. Englewood Cliffs, NJ: Yourdon Press, 1992.

[Paulk 1 et. al., 1993]
Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., Capability Maturity
Model for Software, Version 1.1. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

[Paulk 2 et. al., 1993]
Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M.B., Bush, M., Key
Practices of the Capability Maturity Model, Version 1.1. Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1993.

[Senechal, 1995]
Senechal, B., “Lessons Learned from the Boeing 777 Program,”
Proceedings of QSM Users Conference 1995. McLean, VA: QSM Inc.,
1995.

