
focus

0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 33

current performance, recommendations for
improvement, and a database containing the
department’s historical project performance.

The study concluded that the department
as a whole produced applications cost effec-
tively but more slowly than most other or-
ganizations in its industry. It further con-
cluded that single-developer Web-based
projects performed differently, in several
ways, than the larger team-oriented non–
Web-based projects. Using root cause analy-
sis, the study identified several factors associ-
ated with software development performance.

Based on the results, the consultants—
Quantitative Software Management (QSM)
Associates in Pittsfield, Massachusetts—
recommended enhancing the existing proj-
ect management processes with require-
ments management, project management,
staff training, and a metrics program. The
department planned to implement the rec-
ommendations using the practices described

in the Software Engineering Institute’s Ca-
pability Maturity Model for Software (SW-
CMM).1

The department’s smaller projects were
characterized by motivated but less experi-
enced developers, short schedules, highly
volatile requirements and staffing, high
complexity, and few standards and tools.
The large projects, on the other hand, were
just the opposite. What wasn’t understood
was the magnitude of the project perform-
ance characteristics and what effect they
had on development productivity.

The company
Rockwell Collins employs 16,000 people

worldwide—the applications development de-
partment has about 100 people within a 500-
employee IT department (see Figure 1). The
applications development department pro-
duces traditional and cutting-edge business
systems to support every facet of the com-

What I Did Last Summer:
A Software Development
Benchmarking Case Study

James T. Heires, Rockwell Collins

This article
describes a
vendor-supported
benchmarking
study of an
applications
development
department.
The study
established a
quantitative
performance
baseline of the
organization and
compared it to
industry trends.

R
ockwell Collins, a world leader in the design, production, and
support of communications and aviation electronics solutions for
commercial and government customers, recently funded a bench-
marking study. The study aimed to improve the ability of Rock-

well Collins’ applications development department to deliver software solu-
tions to its internal customers. The deliverables from this study included

benchmarking

Copyright © 2001 IEEE. Reprinted from IEEE SOFTWARE September/October 2001.

This material is posted here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE endorsement of any of QSM's

products or services. Internal or personal use of this material is

permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works

for resale or redistribution must be obtained from the IEEE by sending a

blank email message to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of

the copyright laws protecting it.

pany’s products and services, including manu-
facturing, accounting, marketing, and human
resources. The study discovered that the ma-
jority (85 percent) of the department’s soft-
ware development effort is expended on very
large projects—those requiring more than
1,500 staff hours of effort each (see Figure 2).

The applications development depart-
ment employs a broad variety of technolo-
gies that bring solutions to its customers.
Platforms vary greatly from HP and IBM
mainframes to client-server to stand-alone
PCs to the Web. Of the 28 projects involved
in this benchmarking study, 28 different
programming languages were employed in
various combinations. Some of the more
popular languages include Delphi, Visual
Page, HTML, Visual Basic, Lotus Notes,
Access, Cobol, Pascal, Perl, Power Builder,
VB Script, Crystal Reports, Oracle, ABAP,
and SQL.

Tools and development environments
were equally varied. A declining mainframe
development environment was making way
for a newer, but less mature, Web infra-
structure. The IBM mainframe environment
included such rudimentary features as pro-
duction configuration control, debugging,
build control, and program trace, but was
managed in a consistent, centralized fash-
ion. Although developers complained about
the weak tool set, the consistent process pro-
vided a much-needed development standard
and discipline. Web development tools, on
the other hand, were more modern but var-
ied by programming language. Most devel-
opment languages came with their own
compiler, debugger, database, and testing
tools. There were few configuration man-
agement, quality assurance, or design tools
available across these environments.

The study was undertaken to help quan-
tify the value of the department’s software
process improvement initiative—choosing
the SW-CMM as its improvement model be-
cause Rockwell Collins had been success-
fully using it in other business units. The
company planned two benchmarking stud-
ies (one early and one late) to quantify the
improvements. Although it is usually diffi-
cult to connect cause and effect, this dual
measurement approach was selected to help
quell the expected accusations that the ini-
tiative had no impact on the bottom line.
The department had recently been assessed
at CMM Level 1 and had just put in place a
core team of process improvement special-
ists to help carry out the initiative.

We used QSM Associates to assist with this
benchmarking study for several reasons—time
being one reason. Because the project schedule
was aggressive, there wasn’t time to use inter-
nal resources. In addition, using a professional
benchmarking firm lent more credibility to the
study results. QSM Associates had carried out
dozens of similar studies over the past 20 years
and maintains a large database of historical
performance statistics from various industries.

Benchmark methodology overview
Planning for the study began with the

consultants and department management
establishing boundary conditions, including
cost, schedule, deliverables, roles, and re-
sponsibilities. These conditions helped pro-
vide some management controls.

The study
discovered that

the majority
of the

department’s
software

development
effort is

expended on
very large
projects.

3 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

Rockwell Collins

IT department

Applications
development
department

Figure 1. Organizational context.

Very small project
< 125 staff hours
 2%

Small project
< 375 staff hours
3%

Medium project
< 750 staff hours
 3%

Large project
< 1,500 staff hours

7%

Very large
project

> 1,500 staff hours
85%

Figure 2. Projects by effort.

The study’s cost consisted of consulting
fees and employee time needed to carry out
the study. The benchmarking was part of a
larger project and was represented by a se-
ries of tasks in the project schedule (see Fig-
ure 3). The deliverables the consultants pro-
vided included a kick-off presentation, a set
of findings and recommendations, a final
presentation, and a database of our own his-
torical project data. In addition, the consult-
ants demonstrated how to leverage the data-
base to better estimate new projects. They
also established roles and responsibilities to
minimize the study’s duration and manage-
ment oversight required. The project man-
ager planned the study, selected and negoti-
ated with the consultants, identified target
projects and their key personnel, ensured the
study performed to plan, and provided lo-
gistics support. The consultants provided
preparatory materials, manpower to carry
out the data collection interviews, data vali-
dation and statistical analysis of the data,
and kick-off and final presentations. Key
project team members from participating
projects gathered project data, attended data
collection interviews, and supported post-in-
terview data validation activities.2

The department generated a list of ap-
proximately 75 recently completed projects
to be included as part of the benchmarking
study, then narrowed that list down to 30 to
50 projects. To perform a reasonable quan-
titative analysis, statisticians recommend a
sample size of at least 30 data points.
Trends are easier to determine and outlying
data points have a reduced effect on the
analysis results.

The consultants knew in advance that
some candidate projects would not be on
the final list. They disqualified projects for
several reasons, including incomplete or un-
obtainable core metrics, unavailable knowl-
edgeable project team members, and prema-
turely cancelled projects.

Because the projects with complete data

were more likely to be chosen, they were also
more likely to exhibit more discipline and
therefore higher productivity. However, it
was also likely that other organizations rep-
resented in the reference database had a sim-
ilarly biased distribution. Who, after all,
would submit mediocre project data to be in-
cluded in an industry-wide database? Thus,
the comparison between the department’s
performance and that represented by the in-
dustry reference database is appropriate.

The consultants provided preparation
materials—data collection forms, metrics
definitions, and guidelines. Next, the bench-
mark project manager asked the other PMs
and developers to gather preliminary data
on their projects. The requested data in-
cluded the Software Engineering Institute’s
core measures of size, time, effort, and de-
fects.3 Although several PMs expressed con-
cern about participating in the study, an
early decision to explicitly fund the study
helped convince some project teams to par-
ticipate. Other project teams exhibited
stereotypical shyness about having their proj-
ect performance measured. In my experience,
this is quite common in lower-maturity or-
ganizations that have less experience with
software project measurement or less under-
standing of its benefits.

The on-site benchmarking study began
with a brief kick-off presentation given by
the consultants to invigorate management
and set the participants’ expectations for the
remainder of the study. The consultants ex-
plained the process as well as the deliver-
ables and their value.

Data collection
Immediately following the kick-off meet-

ing, three solid days of data collection be-
gan. A 90-minute time slot was allocated to
each project, giving each PM a chance to tell
his or her story. The PM and one or two key
developers from the project brought their
prepared project data to the data collection

Using a
professional

benchmarking
firm lent more
credibility to

the study
results.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 35

 WBS Task Name Duration Start Finish

 9 Benchmark Studies – QSM 326 days Mon 5/1/00 Mon 8/20/01

9.1 QSM Benchmark – 1 48 days Mon 5/1/00 Mon 7/10/00

9.1.1 Preparatory Data Collection 1 week Mon 5/1/00 Fri 5/5/0

9.1.2 Kickoff Meeting 1 day Mon 5/6/00 Mon 5/6/00

9.1.3 Data Collection Interviews 3 days Tue 5/9/00 Thu 5/11/00

9.1.4 Follow Up 2 weeks Mon 5/15/00 Fri 5/26/00

9.1.5 Final Report 1 day Mon 7/10/00 Mon 1/10/00

Figure 3. Detailed schedule of benchmarking tasks.

interview. A consultant and a process im-
provement specialist also attended.

For each project, data collection began
with SEI core measures. These quantitative
measures included the project’s size, time,
effort, and defects. Additional qualitative
and demographic data were also collected—
application complexity, team skills, devel-
opment environment, and technology used.

For a Level 1 organization like us, this
data was difficult to gather. Some projects
did not establish a separate time-charging
mechanism to allow measuring effort sepa-
rately for each project. Other projects did
not know when the project began because
of numerous false starts.

To facilitate gathering this critical data, a
simple staffing profile was produced early in
the interview (see Figure 4). Drawing a
monthly (or weekly) timeline showing the
number of full-time-equivalent people work-
ing on the project helped the team remember
what happened. Different colors indicated
each phase, illustrating any phase overlap.
This simple chart helped us determine
phase-specific effort and duration informa-
tion.

In a perfect world, each PM would have
arrived at the interview with a complete set

of data to enter into the database. In reality,
however, this was a painful and slow
process, requiring several passes. More than
half of the projects on the initial list had to
be dropped from the study because of in-
complete or inaccurate data. One issue that
plagued data collection on several projects
was PM staff turnover. Some projects ratch-
eted through two or three PMs during their
six-month life cycle. The lack of a data col-
lection infrastructure was also a cause of
“project amnesia,” whereby the entire proj-
ect legacy left with the departing PM.

The QSM data structure
QSM Incorporated, a sister organization

to QSM Associates, has a well-established
data structure and associated analysis
methodology that is employed at bench-
marking engagements. The data structure
originated with an empirical study carried
out by QSM researcher and chief scientist
Larry Putnam.4 Putnam’s study established
a software equation that defined a metric
called the Productivity Index in terms of
size, time, and effort. This macro-level met-
ric is primarily used to empirically deter-
mine a project’s, or an organization’s, rela-
tive development efficiency. The QSM data
structure includes the SEI’s recommended
core measures as well as post-delivery de-
fects, planned duration, planned effort, the
number of requirements, the languages
used, and demographic data (for example,
project team members, application type,
and tools used).

The consultants needed to carry out some
simple transformations in order to use the
QSM data structure. Size was the most diffi-
cult conversion. The two most popular size
measures—source lines of code (SLOC) and
function points—can be used directly in any
combination in the QSM data structure. Be-
cause we did not have trained individuals in
function point counting, we relied on physi-
cal measures such as modules, programs,
and SLOC as our fundamental size meas-
ures. Line-based languages (for example,
Pascal, ABAP, and HTML) could be counted
directly, while other languages were con-
verted to SLOC. Languages with means of
expression other than lines of code (for ex-
ample, Visual Basic, IMG, Crystal Reports,
and Lotus Notes) were converted to SLOC.
Several QSM-provided gearing factors en-

3 6 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

Months

Phases:
Functional design
Main build

1 2 3 4 5 6 7 8 9 10 11 12

Nu
m

be
r o

f f
ul

l-t
im

e-
eq

ui
va

le
nt

 w
or

ke
rs

Figure 4. Staffing profile by phase.

abled conversion from these native measures
to SLOC. Gearing factors are expressed as a
range of values. For example, one frequently
used language is Crystal Reports. These re-
ports are made up of fields, which, on aver-
age, tend to be between 2 and 10 SLOC
each, depending on complexity.

Although QSM derived its gearing fac-
tors empirically through benchmarking
studies such as this one, converting size
units reduces the size measure’s precision.
Using function points was an option for this
study, and we used them on a few projects
as data validation. However, function
points still must be converted to SLOC in
order to use QSM’s data model. Further-
more, it would have been difficult to use
function points in this stage of our maturity
because of our lack of expertise in that area.
In retrospect, SLOC was the best unit of size
for this situation.

Another adjustment required to conform
to QSM’s data structure involved the devel-
opment phase definitions. Data is requested
by phase of development: feasibility study,
functional design, main build (detailed de-
sign through delivery), and maintenance. If
a project used life-cycle models, such as the
rapid-prototyping or evolutionary para-
digms, the data had to be reconfigured to
match the QSM phases. This was not, how-
ever, a difficult task. It consisted of combin-
ing effort and schedule information from
the project data into the development
phases defined by QSM.

Although the SEI and other organizations
have tried to foster standard measurement
definitions, such definitions must be better
defined and more widely used before the in-
dustry truly benefits. Core measures need
standard definitions and empirical studies to
help establish their use in business. One
problematic example is the inadequate defi-
nition of SLOC. The Software Productivity
Consortium has one of the only documented
definitions.5 Unfortunately, the SPC defini-
tion is quite dated and does not adequately
define common relationships such as the
number of changed lines of code. With stan-
dards in place, tools would evolve to support
the standard.

All project data found its way into
QSM’s data collection and analysis tool,
Slim-Metrics.6 This database was instru-
mental in ensuring that project data was

collected in a consistent fashion, and it
greatly facilitated the analysis portion of the
benchmarking study.

The most important step in the process is
validating the collected data for correctness
and consistency. Without valid data, the
analysis is of little value. The consultants
carried out this step, but the project team
members supported it. As the data was col-
lected, and when analysis began, issues
about the data’s validity arose. As these is-
sues were clarified, confidence in the data’s
validity improved. The validation step was
completed only after the data was scruti-
nized and cross-checked. The consultants
then had a good, quantitative understand-
ing of what happened on the project.

Data analysis
The benchmarking study gathered and

validated data from 28 projects. The data
was stratified in multiple dimensions to un-
cover strengths and weaknesses. Root cause
analysis was the basic method used, but var-
ious statistical, trend, and demographic
analyses were also part of this activity.

Root cause analysis relies heavily on the
experience of the analyst and attempts to find
causes that explain the organization’s behav-
ior. Positive and negative causes were sought
to deliver a balanced recommendation. Vari-
ous analytical tools were used to find the
root causes, including stratification, scatter
plots, Pareto diagrams, and histograms.

The analysis becomes the department’s
legacy, so it should be representative. It ex-
plains the quality, efficiency, size, and cost of
the organization’s software development
projects. The analysis is the basis of a deliv-
erable—consisting of an annotated presenta-
tion and a database of project data—and
shared with the organization. The database is
later used to support further analysis, project
estimates, and tracking activities.

The findings
The response to the benchmarking study

was positive and immediate. Developers and
senior management alike resonated with the
study’s implications. Everyone involved felt
the study accurately characterized the soft-
ware department’s development capability.

Although the study didn’t reveal any sur-
prises, it did quantify our behavior. The ap-
plications development department expends

The
benchmarking
study gathered
and validated
data from 28

projects.
The data was
stratified in

multiple
dimensions
to uncover

strengths and
weaknesses.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 37

much less effort and staffing than the indus-
try average on their projects, compared to
like-sized projects in QSM’s IT database.
Consequently, the project duration is gener-
ally longer than average. The Productivity
Index of the 28 projects followed the indus-
try trend line but had much more volatility.
We decided to stratify the data to identify
the performance differences of various proj-
ect types.

Stratification proved to be the most reveal-
ing part of the analysis. When completed, two
significant factors emerged: team size and
Web technology. Compared to non–Web-
based, team development projects, Web-
based single-developer projects exhibited the
following positive and negative differences.

The positives were

� 10 percent more efficiency (as measured
by the Productivity Index),

� 64 percent lower cost,
� 45 percent shorter duration,
� 47 percent higher field reliability, and
� 77 percent smaller team size.

The negatives were

� 7.5 percentage points more scope growth,
� 19 percent more staff turnover,
� 65 percent less experience on the appli-

cation being developed,
� 53 percent more logic and 28 percent

greater logic complexity,
� 11 percent more customer issues, and
� 24 percent lower development tool

capability.

S ome of the benefits of benchmarking
your own organization are en-
hanced software estimates, better

project tracking, and proof of the value of
improvement initiatives.

The vast majority of software estimation
models were developed with the use of em-
pirical data collected from hundreds or thou-
sands of actual projects. However, all estima-
tion models should be calibrated to an
organization’s own software development be-
havior before being used to forecast a new
project. The difference between a calibrated
and an uncalibrated estimation tool is im-

mense. A properly calibrated estimation
model generates more accurate results than
an uncalibrated one.7 That being said, cali-
bration is best carried out only after a thor-
ough quantitative study. Using a calibrated es-
timation model serves as a sanity check
against the estimate. The historical data helps
answer the all-important question, “com-
pared to what?” Forty-eight percent of the
projects in the study used various Web-based
technologies. If an estimate of a new Web site
were needed, it might make sense to use an es-
timation model calibrated with these projects
and to compare the results with the historical
project data.

Benchmarking data can also enhance
tracking and oversight of in-flight projects.
If, for example, your project is entering the
testing phase but the original deadline has
already elapsed and the customer is asking
for an estimated delivery date, benchmark-
ing data can help. Using a defect discovery
rate for your project and a calibrated fore-
casting model, you can make this task much
easier. Perhaps more importantly, you can
avoid the embarrassment of delivering a de-
fect-laden product too early.

Evidence of the benefits of improvement
can often be difficult to demonstrate. Many
times, however, historical data and a few
statistical techniques can prove that value
has been delivered as a result of an im-
provement initiative.8 Although this initia-
tive is not yet complete, the existence of this
benchmarking study will make the post-
improvement analysis easier.

The department benefited from this study
in many ways. Because the company was
just starting its process improvement jour-
ney, the most immediate benefit received was
the establishment of a performance baseline
for the company from which it could meas-
ure improvements.

Another benefit was the ability to com-
pare our performance with industry trends.
This comparison let us determine how com-
petetive we are in our industry.

In addition, the final analysis listed rec-
ommendations that included processes to
improve the practices of requirements man-
agement, project planning, staff training,
and metrics collection. These recommenda-
tions were combined with the goals of the
SW-CMM initiative to constitute an action
plan for improvement. The action plan was

The most
immediate

benefit received
was the

establishment of
a performance

baseline
for the company

from which
it could measure
improvements.

3 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 13 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

a critical step for the department, which had
never before based an improvement plan on
actual project performance data.

Next summer, the company plans to re-
peat the study and compare the two data
sets. This comparison will clearly show how
much improvement the company realized
over the duration.

References
1. M.C. Paulk, C.V. Weber, and B. Curtis, The Capability

Maturity Model: Guidelines for Improving the Software
Process, SEI Series in Software Engineering, Addison-
Wesley, Reading, Mass., 1995.

2. IT Organization, Benchmark Thyself, Cutter Consor-
tium, Arlington, Mass., 2000, pp. 29–31 and 67–71.

3. A. Carleton et al., Software Measurement for DOD
Systems: Recommendations for Initial Core Measures,
tech. report CMU/SEI-92-TR-019, ADA 258 305, Soft-
ware Eng. Inst., Carnegie Mellon Univ., Pittsburgh,
1992.

4. L.H. Putnam, “A General Empirical Solution to the Macro
Software Sizing and Estimating Problem,” IEEE Trans.
Software Eng., vol. SE-4, no. 4, 1978, pp. 345–361.

5. R. Cruickshank and J. Gaffney, Code Counting Rules
and Category Definitions/Relationships, Version

02.00.04, Software Productivity Consortium, Herndon,
Va., Apr. 1991.

6. J.T. Heires, “Measuring QSM’s Repository and Analysis
Tool,” Application Development Trends Magazine, vol.
5, no. 6, 1998; www.ADTmag.com/Pub/jun98/pr601-2.
htm (current 15 Aug. 2001).

7. B. Boehm et al., Software Cost Estimation with CO-
COMO II, Prentice Hall, Upper Saddle River, N.J.,
2000, pp. 150–151.

8. J.T. Heires, “The High Technology Historian: Historical
Data Analysis,” IT Metrics Strategies, vol. VI, no. 8,
Aug. 2000.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 39S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 39

About the Author

James T. Heires is the principal project manager at Rockwell Collins. His professional
experiences include design of electronic flight instrumentation systems, engine indicator and
crew alerting systems, flight management systems, and consumer electronics. He is working to
improve the state of the practice of project management through parametric cost estimation
and quantitative tracking techniques. Contact him at jtheires@rockwellcollins.com.

CALL FOR ARTICLES:

Industry

Experience

Reports

The community of leading practitioners can
learn from many sources. Experience reports with
lessons learned in industry are one way to share

successes or failures with others who likely face

similar situations.Experience reports offer authors the opportunity

to report on a technology or process they introduced

in their company, analyze the impact of their efforts,

and explore what they would do differently if they

could do it again.IEEE Software seeks original articles on topics in-

cluding development techniques, processes, testing,

training, and management. Articles should be 2,000 to

2,400 words with each illustration, graph, or table

counting as 200 words. We also encourage authors to

submit up to 10 short bullet points on lessons learned

and references to Web sites for further information on

the topic.
Submissions are reviewed by members of the

magazine’s Industry Advisory Board and are subject to

editing for style, clarity, and space. For detailed author

guidelines, visit our Web site at computer.org/software/

genres.htm or contact software@computer.org. For

content-related questions, contact associate editor in

chief Wolfgang B. Strigel at strigel@spc.ca.

SUBMISSIONS ARE ACCEPTED AT ANY TIME.

