
Size Does Matter:
Continuous Size Estimating and Tracking

Mike Ross
Quantitative Software Management, Inc.

5013 W. Vogel Ave.
Glendale, AZ 85302

(623) 435-9863 (phone) (623) 915-3351 (fax)
mike_ross@qsm.com
http://www.qsm.com

Abstract. Estimating the size of a software system is a critical development
process activity. Not only does size impact the technical solution; it also
impacts the project management solution. It is therefore insufficient to
estimate size only once, at the beginning of the project when the least is
known about the system being developed. This paper describes a
quantitative process for managing the size of software development projects
through continuous estimation. The process includes a probabilistic approach
to estimation coupled with tracking and assessment of trends to determine
whether or not stability exists. This process has direct applicability to the SEI
CMM Level 2 KPAs for Software Project Planning and Software Project
Tracking and Oversight. It also serves as a Level 4 Quantitative Process
Management tool for measuring the effectiveness of an organization’s size
estimating and requirements management processes. [3], [4], [5]

Introduction

Purpose

The purpose of this paper is to justify and describe a process for quantitatively managing
the size of software development projects through continuous estimation.

Scope

The process described in this paper applies to all software development projects. Within the
scope of the SEI CMM, this process applies to the Level 2 KPAs for Software Project
Planning and Software Project Tracking and Oversight. It also serves as a Level 4
Quantitative Process Management tool for measuring the effectiveness of an organization’s
size estimating and requirements management processes. [3], [4], [5]

2

Background

Estimating size is the heart of the software-project estimating
process.
Lawrence H. Putnam [6]

A casual glance at any software project estimating model illustrates the fundamental truth of
the above statement. It follows, and historical data bears this out, that many software
projects fail to meet cost, schedule, and reliability expectations because the actual size
ends up being much larger than expected. Why, then, do so many organizations estimate
size only once, at the beginning of the project when the least is known about the system
being developed? These same organizations tend to revisit a size estimate only if, and
more importantly when, the project is hopelessly out of control.

Intuition, Research, and Supporting Data

What is “Size”?

There are two, often-confused, notions of software size: one that
relates to work and one that relates to functionality.

The modern computing environment poses many challenges. Foremost among them is
addressing totally new technologies. Trying to figure out how big computer programs are
has challenged software engineering since its inception and is further complicated by the
aforementioned dynamic nature of technology. [1]

Analysts have traditionally sized systems written in statement-oriented procedural
languages expressed largely as text (large stacks of cards or reams of tractor-feed paper).
Current technologies now take the form of more abstract representations such as diagrams,
objects, spreadsheet cells, database queries, and Graphical User Interface (GUI) widgets.
[1]

The secret to making progress in sizing these new environments is to identify the unit of
human thought in the abstraction being used. Next, the organization must go through a
calibration process, starting with projects for which the actual size can be determined in
terms of that unit of human thought. The goal of calibration is to establish productivity as a
function of actual size, actual time, and actual effort for completed projects. This newly-
established productivity relationship can then be used to fine-tune the sizing process and to
forecast time and effort on a new project. Once the project is complete, another iteration of
the calibration process can be done. This cycle, repeated numerous times, yields sizing and
forecasting methods that exhibit a high degree of accuracy with minimal variation. [1]

3

Sizing is one of the hardest things a development organization does, and the earlier in the
life cycle it is done, the harder it is to do. [1]

Historically, statements (Source Lines of Code or SLOC) have been used for sizing
systems, sometimes with poor results due to the difficulty of making the mental leap across
the “abstraction chasm” from operational capability to programming language constructs.
SLOC, however, is an excellent measure of the “work” done by the development process
and is most effectively used in process productivity metrics. Advantages: 1) it can be
unambiguously defined for a given language; 2) measuring the size of an existing product is
automatable; 3) most of the world’s historical data contains SLOC as the sizing measure.
Disadvantages: 1) the notion of SLOC becomes ambiguous when dealing with non-textual
abstractions; 2) the measure has little meaning to the customer / end user. [1]

Function Points (FP) offer a way of narrowing the “abstraction chasm” by providing a level of
abstraction between operational capability and programming language constructs. FP is an
excellent measure of the ”functionality” or “value” produced by the development process
and is most effectively used in “bang for the buck” type metrics. Advantages: 1) the
customer / end user can likely relate to the entities being counted; 2) there are networks of
people (e.g., IFPUG) dedicated to standardizing and improving the counting process.
Disadvantages: 1) FP are limited to application domains for which their countable entities
make sense (typically mainframe business applications); 2) the process of counting the
number of FP in a finished product is not automatable, in fact many big FP shops do quick-
and-dirty estimates, using shortcuts such as “backfiring” (back-calculating FP as a function
of language and size in SLOC). [1]

A major qualifier on the use of FP in a productivity relationship is the fact that FP do not
directly relate to development process “work” and must be scaled as a function of the
programming language used. This scaling introduces an additional source of complexity
and variability in the relationship. [1]

If all this isn’t enough to complicate the selection of sizing measures, consider that many
new development methodologies employ abstractions that are neither textual nor do their
components fit within the set of FP counting entities. [1]

Size Drives Cost, Schedule, and Reliability

If you underestimate the size of your next project, common sense
says that it doesn’t matter which methodology you use, what
tools you buy, or even who you assign to the job.
Ed Yourdon

Historical data shows that increasing the size of a system will increase its cost and
schedule, and reduce its reliability at delivery (see Figure 1, Figure 2, and Figure 3). [6]

4

Effort vs Effective Size
QSM Database Subset

Effective SLOC (thousands)
1 10 100 1000

P
erson M

onths

0.1

1

10

100

1000

10000

100000

Business Systems Avg. Line Style 1 Sigma Line Style

Figure 1: Effort (Cost) Increases with Size

Time vs Effective Size
QSM Database Subset

Effective SLOC (thousands)
1 10 100 1000

M
onths

0.1

1

10

100

Business Systems Avg. Line Style 1 Sigma Line Style

Figure 2: Schedule Increases with Size

5

Reliability vs Effective Size
QSM Database Subset

Effective SLOC (thousands)
1 10 100 1000

M
T

T
D

 1st M
onth (D

ays)

0.01

0.1

1

10

100

Business Systems Avg. Line Style 1 Sigma Line Style

Figure 3: Reliability Decreases with Size

Size Estimation is Probabilistic

[Unfortunately, most estimates are] the most optimistic
prediction that has a non-zero probability of coming true.
Tom DeMarco [2]

Size estimation is a probabilistic problem. This can be verified by simply analyzing the
language that people use when they are asked to estimate something. Words and phrases
such as about, probably, somewhere around, and in the neighborhood of, may seem, to
some as weaseling or hedging; however, what they really indicate is the presence of
uncertainty. Far too often, the tendency is to produce an estimate that represents the best
case scenario.

Knowledge Increases with Time

In the beginning a software project is little more than a gleam in
one person’s eye. Yet his organization may need rough estimates
of the cost and schedule to fit into advanced budgets for the next
several years. As work on the concept proceeds, more becomes
known about it and more precise estimates become possible.
Lawrence H. Putnam & Ware Myers [6]

6

Knowledge about any system being developed increases with time. Customers get more
focused about the system’s requirements. Developers get smarter about the technologies
involved. Common sense suggests that as a project approaches completion:

• The rate of change of a system’s estimated final size should approach zero.

• The uncertainty about a system’s estimated final size should approach zero.

Change is Inevitable

“The only thing constant in the universe is change.”
Unknown

A rare project experiences no requirements change or scope growth. Figure 4 illustrates
that over 60% of all projects experience at least a 10% growth in requirements. A qualitative
examination of the underlying data shows requirements growth to be perceived as a
dominant negative factor. Intuition and experience suggest that the impact of a requirement
change is inversely related to the time remaining in the schedule. In other words,
requirements changes that occur late in the project have more impact than do those
occurring early in the project.

Requirements Growth Distribution
QSM Database (5,000 projects)

Req Growth %
0 10 20 30 40 50 60 70 80 90 100 110

%
 P

rojects

0

10

20

30

40

50

All Completed Systems

Figure 4: Requirements Growth Distribution

7

Developers are Optimists

Most people are congenitally optimistic (you have to be to get out
of bed in the morning).
Ware Myers [7]

When you care a lot about the result, the quality of your estimate
approaches zero.
Tom DeMarco [2]

Members of the development team are typically the ones called upon to provide estimates
for the size of their systems. This would seem to make sense; after all, they know the most
about what’s being developed. The problem is, these same people are biased toward
optimism by having a stake in the project’s outcome. Generally, when someone is asked to
provide an estimate of an outcome for which they are directly responsible, the tendency is to
provide a best-case response.

Process Description

“If you don’t measure, then you’re left with only one reason to
believe that you are still in control: hysterical optimism.”
Tom DeMarco [2]

Estimate Periodically and Record the Data

A fundamental aspect to effectively managing the size of a system is to periodically re-
estimate its size and to record the results. Figure 5 shows an example of an artifact for
logging periodic size estimates.

8

Edit Estimate Data for ESLOC (CUM)

Start Date to End Date
Jan-96 Dec-97

Month Low Most Likely High Expected Convergence
Jan-96 45000 60000 75000 60000 0.00
Feb-96 45000 60000 75000 60000 0.00
Mar-96 45000 60000 75000 60000 0.00
Apr-96 45000 60000 75000 60000 0.00
May-96 45000 60000 75000 60000 0.00
Jun-96 53000 62000 70000 61833 43.33
Jul-96 55000 62500 70500 62583 48.33
Aug-96 56000 63000 71000 63167 50.00
Sep-96 57500 63500 72500 64000 50.00
Oct-96 58000 64000 74000 64667 46.67
Nov-96 59000 64500 76000 65500 43.33
Dec-96 60000 65000 78000 66333 40.00
Jan-97 62000 66500 81500 68250 35.00
Feb-97 65500 68000 84000 70250 38.33
Mar-97 67500 70000 86500 72333 36.67
Apr-97 70500 73000 88500 75167 40.00
May-97 72500 75000 90000 77083 41.67
Jun-97 75500 78000 91500 79833 46.67
Jul-97 78500 81000 92500 82500 53.33
Aug-97 82500 85000 93500 86000 63.33
Sep-97 86500 89000 94500 89500 73.33
Oct-97 89500 92000 95000 92083 81.67
Nov-97 91500 94000 95500 93833 86.67
Dec-97 92500 95000 96000 94750 88.33

Figure 5: Sample Data Entry Form

Express Estimates as Ranges

An estimate, to be of any real value, must include two components: magnitude and
uncertainty:

Magnitude quantifies the most likely (best guess) outcome. Probabilistically
speaking, this means that 50% of the time the actual outcome will be lower than the
most likely outcome and 50% of the time the actual outcome will be higher than the
most likely outcome.

Uncertainty quantifies the distribution of all possible outcomes. This can be
expressed as a low outcome and a high outcome between which 99% of all possible
outcomes will fall.

An estimate expressed in this form is hereinafter referred to as a 3-point estimate.

9

Adjust for Bias

Since most projects experience requirements growth, it follows that the difference between
the most likely and high values in a 3-point estimate is usually much larger than is the
difference between the most likely and low values. To dampen the effect of this high-side
bias, the notion of an expected value is introduced as follows:

Expected
Low Most Likely High

=
+ × +4

6
[6]

Viewing a 3-point estimate as defining some associated normal distribution, one standard
deviation can then be approximated by the following:

Standard Deviation ()
High Low

σ =
−
6

[6]

Ideally, the expected size estimate value would remain constant throughout the project; i.e.,
the baseline value equals final actual value. This rarely happens; however, since it is the
goal, this constancy forms the basis for the plan and variance threshold values in the
tracking methodology.

Look for Convergence

Since the uncertainty about a system’s estimated final size should approach zero, we need
to establish a way to quantify and track this decreasing uncertainty. Here we introduce the
notion of convergence. As knowledge and experience increase, uncertainty decreases;
therefore, the high size estimate and low size estimate curves should converge. For a given
elapsed calendar time t, convergence Ct is a function of the corresponding high Ht and low
Lt estimates as follows:

C
H L

H Lt
t t

Baseline Baseline

= −
−
−

1

Convergence in this context is represented as a percentage:

• A value of 0% (0) convergence represents the level of uncertainty contained in the
baseline 3-point estimate.

• A value of 100% (1) convergence represents the total absence of uncertainty (i.e.,
the high size estimate and the low size estimate are equal).

Note that it is possible to have negative convergence (divergence) which happens when the
current uncertainty is greater than the baseline uncertainty.

Cumulative effort (cost), cumulative code production, and cumulative defect discovery all
behave according to the cumulative form of a Rayleigh distribution [6] (sometimes referred
to in project management circles as an S curve). Uncertainty is a function of the problem-
solving process, people solve problems, and people are applied to projects in a Rayleigh-
like pattern. [6] A reasonable inference then is that, ideally, size estimate convergence

10

should go from 0% at the beginning of the project and approach 100% by the end of the
project according to the cumulative form of the Rayleigh function. This ideal behavior forms
the basis for the plan and variance threshold values in the tracking methodology.

Track Over Time

Tracking of periodic 3-point size estimates provides valuable comparison and trend
information. The idea is to track quantities that can easily verify expected project behavior
and have the best chance of providing early warning when the project is in trouble. As a
reasonable minimum, track expected size estimate and size estimate convergence as
functions of elapsed calendar time. Additionally, add variance thresholds to the graphs to
support the process control rules described in the next section (as exemplified by Figure 6,
Figure 7, Figure 8, and Figure 9).

Control the Process

Within the context of quantitative project management, control means comparing the
desired (planned) outcome to the measured (actual) in-process outcome and basing any
corrective action on the difference. Plan the project and take action that causes the earliest
possible convergence on what will be the final actual size value.

The following is an example implementation of a size-estimate-based control process that
uses observations from the time-based tracking curves and a traffic light metaphor with
associated rules.

Green Status—No corrective action recommended.

• The default state; i.e., the criteria for neither Yellow Status nor Red Status
have been met.

Yellow Status—Determine the cause, take corrective action.

• Current Expected Size Estimate is outside ±1σ of the baseline 3-point
estimate or

• Current Size Estimate Convergence is outside ±1σ of the baseline plan
Rayleigh convergence curve.

Red Status—Determine the cause, take corrective action, replan the project based
on current 3-point estimate.

• Current Expected Size Estimate is outside ±2σ of the baseline 3-point
estimate or

• Current Size Estimate Convergence is outside ±2σ of the baseline plan
Rayleigh convergence curve.

11

Examples of Application

Project with Stable Sizing

Figure 6 and Figure 7 illustrate the tracking of estimated size data for a project with stable
sizing. After some early requirements misunderstandings, the project was re-planned during
the fifth month. After the replan, the project experienced minor size growth that was well
within the green threshold. The bulk of this growth occurred relatively early in the project;
late changes were rare. Also, after the replan, size estimate convergence occurred close to
plan and well within the green threshold. Even with the size growth, the project still
managed to come in on time and within budget.

Expected Size Estimate (Rate)

0

20

40

60

80

100S 765432

E
S

E
 (thousands)

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 6: Expected Size Estimate Trend for Project with Stable
Sizing

12

Size Estimate Convergence (Cum)

0

20

40

60

80

100

120

140S 765432

S
E

C

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 7: High-Low Size Estimate Convergence for Project with
Stable Sizing

Project with Unstable Sizing

Figure 8 and Figure 9 illustrate the tracking of estimated size data for a project with unstable
sizing. After some early requirements misunderstandings, the project was re-planned during
the fifth month. Unfortunately, after the tenth month, some serious uncertainty began to
creep in. The project was hit with several new requirements plus it lost a substantial amount
of expected reuse benefit. Uncertainty increased as the bad news continued to roll in.
Surprisingly, no replan was done and no get-well strategy was implemented. The expected
size continued to grow, unchecked, until the customer finally initiated a code freeze and
took delivery of the system as it was. The supplier subsequently lost in a competitive bid for
the next phase of the program.

13

Expected Size Estimate (Rate)

0

20

40

60

80

100S 765432

E
S

E
 (thousands)

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 8: Expected Size Estimate Trend for Project with
Unstable Sizing

14

Size Estimate Convergence (Cum)

0

20

40

60

80

100

120

140S 765432

S
E

C

1 4 7 10 13 16 19 22 25 *
Jan
'96

Apr Jul Oct Jan
'97

Apr Jul Oct Jan
'98

Actual

Interpolated

Plan

Green CB

Yellow CB

 S = Start

 2 = CDR

 3 = FCC

 4 = SIT

 5 = UOST

 6 = IOC

 7 = FOC

Figure 9: High-Low Size Estimate Convergence for Project with
Unstable Sizing

Conclusion
Software size is a quantity that has a profound effect on development cost, schedule, and
reliability. Quantitative management of software size is therefore necessary to ensure
adequate quantitative management of cost, schedule, and reliability. Since software size is
an estimated quantity (i.e., the final value cannot be measured) until the end of
development, one must apply quantitative management techniques to the estimates
themselves. This can be accomplished with continuous 3-point size estimation and time-
based tracking of values derived from these 3-point estimates.

Project management success means achieving expectations. Unreasonable expectations
lead to failure. Guard against expectations being too high and too low. Finally, you can’t
control what you can’t measure. [2]

15

References
[1] Butler, J. & Ross, M., T., “Making the First Cut: Sizing New Technology.” QSM

Perspectives, Fall 1997, Volume 20 Number 2, pp. 1-2, 4.

[2] Demarco, T., Controlling Software Projects: Management, Measurement, and
Estimation. New York, NY: Yourdon Press, 1982.

[3] Humphrey, W., Managing the Software Process. Reading, MA: Addison-Wesley
Publishing Co., 1989.

[4] Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V., Capability Maturity Model for
Software, Version 1.1. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 1993.

[5] Paulk, M.C., Weber, C.V., Garcia, S.M., Chrissis, M.B., Bush, M., Key Practices of
the Capability Maturity Model, Version 1.1. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1993.

[6] Putnam, L. & Myers, W., Measures for Excellence: Reliable Software On Time,
Within Budget. Englewood Cliffs, NJ: Yourdon Press, 1992.

[7] Putnam, L. & Myers, W., Industrial Strength Software: Effective Management
Using Measurement. Los Alamitos, CA: IEEE Computer Society Press, 1997.

16

Biography
Michael A. Ross is currently Managing Director of the Western Region Office of Quantitative
Software Management, Inc. where, for the last four years, he has served as one of QSM’s
primary consultants and analysts working with Fortune 500 companies and government
agencies in the areas of measurement, sizing, forecasting, and control.

Mr. Ross, during 17 years with Honeywell Air Transport Systems (formerly Sperry Flight
Systems), developed or managed the development of embedded software for avionics
systems installed in the Lockheed L1011-500, Boeing 757/767, Airbus A320, Douglas MD-
11, British Aerospace BAe-146, and Boeing 777 airplanes. He also co-founded the
division’s process improvement team (later to become its SEPG), served as a corporate
SEI CMM assessor, and served as the division’s focal for software project management
process improvement.

Mr. Ross did his undergraduate work at the United States Air Force Academy and Arizona
State University, receiving a Bachelor of Science in Computer Engineering. He is a member
of the IEEE, the International Function Points Users Group, the International Society of
Parametric Analysts, the Arizona Software Association, and the Phoenix area Software
Process Improvement Network.

