
Larry Putnam’s Career in Software Estimating

Early Interest
I first became interested in computers while I was a young officer in the Army doing
graduate studies in physics at the Naval Post Graduate School during the period
1959 to 1961.

In one of my physics courses I needed to do some very detailed, tedious calculations
which required precision out to twelve decimal places. The only tools to do that
kind of work at that time were big, clumsy, desk-top mechanical calculators. For
one graded exercise I had to go into the local town and hire one of these machines
over the week-end to be able to do the necessary calculations. This was back in
slide-rule days; it was just impossible to get more than about 2 to 3 decimal places
of precision.

1961-1964 Army Nuclear Weapon Program Office
Following graduate school I was assigned to the Army’s Special Weapons
Development Division in the Combat Development Command at Ft. Bliss, Texas.
One of my jobs there was supervising the preparation of the Army’s nuclear
weapons selection tables. This involved a great deal of calculation of tables
pertaining to the effects of nuclear weapons. These tables were used to pick the
right weapon for a particular tactical operation. The Army would have to re-do
these tables every time their inventory of weapons changed. Consequently we were
continually turning out new tables which were several hundred pages in length.

We were doing this work on a small computer about the size of a refrigerator,
manufactured by the Bendix Corporation. It was a model G15 computer and had
about the power a programmable calculator has today. This machine was
programmed in Assembly Language. Later I had an opportunity to program the
machine in a higher order language, ALGOL. These were simple engineering
programs of perhaps 50 odd lines of code, very small programs indeed.

In l966, while an instructor in nuclear weapons effects, at the Defense Atomic
Support Agency (now called the Defense Nuclear Agency) in Albuquerque, New
Mexico, I needed to do some blast calculations to support some of the teaching that I
was doing. We were located immediately adjacent to the Sandia Laboratories
which was the principle Atomic Energy Commission contractor responsible for the
arming, fusing and firing components that went into our nuclear weapons.

The national nuclear program has always been a big user of computers in their
research and development work. They were always on the forefront of computing
technology and bought the biggest and best that were available from the computer
industry. Just at the time I needed to do these calculations, Sandia Labs had just
received the largest available scientific computer from UNIVAC, a Model 1108. It
was installed next door to our facilities. At first they had far more computing

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 2

capacity in that machine than they needed for their own work. So they advertised
that their machine would be available for use by other people on the base for their
own scientific calculations. They even offered to teach people to program the
machine in FORTRAN.

I signed up for the course. In about 15-20 sessions, I learned enough about
FORTRAN programming so that they would grant me access to their machine.

At that time, one had to prepare a deck of IBM punch cards and submit the job the
day before; the computer operators would put the job into the run stream for the
computer that night. In the course of learning how to program in FORTRAN, I
never did learn the procedure to punch up the job control cards to initiate the actual
execution of the FORTRAN program. So I found I had some unplanned lessons to
learn when I got kicked off the machine about ten times before I could finally
generate the right sequence of job control cards for my FORTRAN program.

I also quickly got acquainted with debugging programs because even when my job
was initiated, I’d get kicked off because of syntax errors in the programs I had
written. It turned out to be a quite lengthy period of time before I finally got a
successful program to compile, run and generate the data that I was interested in.

The really significant thing that came out of this was that I got a very pretty
certificate of completion for the FORTRAN programming course. Naturally, I
wanted this to reflect favorably in my Army records, so I mailed it off to my
personnel file kept at the Pentagon. Thought no more about it for a number of
years.

Computer Duty in the Army
In 1972, after completing a tour in Viet Nam and another two years commanding
troops at Ft. Knox, Kentucky, it came time for me to do some duty in the Pentagon.
The Army personnel organization did not have any jobs in the nuclear business at
the time but here’s where my FORTRAN Programming certificate came into play.
In reviewing my records the personnel people decided, based on my computer
programming experience, that I was eminently qualified to take charge of the
Army’s automatic data processing budget. I was going to deal with the budgetary
process for the Army’s procurement of computers and funding of software
development programs.

I didn’t know anything about software at this point in time other than the little,
bitty FORTRAN, ALGOL and Basic programs I had written. At that point in time
the Army was spending close to a 100 Million dollars a year to automate the
business functions that they were performing - their payroll, their inventory
management, their real property management on bases around the world, their
mobilization plans, their force deployment plans, their command and control
structure, and virtually everything that had anything to do with business and
logistic operations in the Army. This had been automated on the first large- scale
computers that came along. Most of this initial work had been done in Assembly

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 3

language. At the time I arrived it was just being done over in higher order
languages, principally COBOL. We were in the midst of trying to get about 50 to 70
large scale systems completed and out doing their jobs in the active Army. All of
this amounted to about 100 Million dollars of expense annually. Hardware was
another couple hundred million.

In the midst of all this I began to hear those ominous words about over-runs and
slippages. We were having a significant number of those occur with these large
Army programs which were running from 50,000 to 400,000 lines of COBOL code.

I really became aware of problems with software the first time I went to the budget
table with the people from the Office of the Secretary of Defense. We were going
through the justification of our ADP program. The software aspects of this budget
were only a third of the total budget and yet it was occupying almost all the time in
the hearing. We were looking at the next fiscal year and the five following fiscal
years after that. In the case of the Army’s SIDPERS (Standard Installation
Division Personnel System), we were looking at a system that had become
operational the year before. When it first became operational it was up to 118
people; the next year we projected it to fall to about 116, then we were saying we
needed 90 people for each of the next five years.

The budget analyst from the Office of the Secretary of Defense, rightly enough,
asked “What are the people going to do? The system became operational a year ago.
How many bases is it deployed to? Once it’s out there, what are you going to use
these 90 people for? Isn’t it finished?”

Well, there was a big silence in the room. I was new, first time on the job. I didn’t
know the answer to this. So I looked to my left then to my right - - to those long-
term Army civilian employees that had come into the Pentagon with the first
computer and were the acknowledged experts. They were strangely quiet as well.
Nobody on the Army side of the table knew what the real reason was for those 90
people. The very lame answer that finally dribbled out was “maintenance”. So all
the dialogue and conversation came to a halt, a big silence. Finally, the analyst
from OSD said, “Look, this is a 10 Million dollar item. Unless I can get some
satisfactory answers on this, I guess I will have to delete it out. Why don’t we
adjourn the meeting, [it was almost 4 o’clock in the afternoon] re-convene at 9
o’clock in the morning and perhaps by then you can call a few people that know
more about it and we can come up with a satisfactory answer. See you in the
morning.”

So we scurried off, called the Army Computer Systems Command. We waited by
the phone for several hours into the evening. Finally, we got a response back that
was lame, inadequate. Upshot: Nobody in the Army really knew what the 90
people were going to do for the next five years, except “maintenance.”

So, the next day by 9:15 in the morning we had lost 10 Million dollars from the
Army’s ADP budget.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 4

The following day, while walking down the halls of the Pentagon away from the
budget meeting, my boss, a Major General from the Corps of Engineers, said “You
know Larry, this business of trying to plan the resources and the schedule for
software projects is a very mystifying business to me. All my experience in the
Corps of Engineers has been that we always, even early on in a project - - the big
dams, the waterways projects - - we always had some feel for the physical resources
required; how many dump trucks, how many cubic yards of concrete, how many
shovels, how many people we needed to do the job. For these sort of things we could
make some crude estimate, based on a little bit of previous data. Yet any time I try
to get similar types of answers on computer programs, things having to do with
software, I immediately get a dialogue on the internal architecture of the computer
itself, the bits and bytes. Never anything about how long is it going to take, how
much it is going to cost, how many people I am going to need, how good is it going to
be when I deliver it. We need to have a way to address these kinds of things at our
level here at the Department of the Army so we can come to grips with this business
of planning and managing software development.”

So, that was really the motivation that got me thinking about how software systems
behave and how we might be able to effectively model that with a few parameters
that would be useful; to get the answers that senior managers wanted.

Within a couple weeks of this budget disaster losing 10 Million dollars, by pure
luck, I happened to stumble across a small paperback book in the Pentagon
bookstore. It had a chapter on managing R&D projects by Peter Norden of IBM.
Peter showed a series of curves which I will later identify as Rayleigh curves.
These curves traced out the time history of the application of people to a particular
project. It showed the build up, the peaking and the tail off of the staffing levels
required to get a research and development project through that process and into
production. Norden pointed out that some of these projects were for software
projects, some were hardware related, and some were composites of both. The thing
that was striking about the function was that it had just two parameters. One
parameter was the area under the curve which was proportional to the effort (and
cost) applied, and the other one was the time parameter which related to the
schedule.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 5

Staff,
No. of People

Dev. Time

Elapsed Time

Personmonths of Effort

Figure 1. A typical Rayleigh staffing curve.

I found that I could take these Rayleigh curves and easily adapt them to the
budgetary data that I had on the Army software projects. That data was collected
by fiscal years. We had the data on the application of number of person years for
each of the fiscal years throughout the history of any project in our budget. So, I
went ahead and quickly plotted up all the software systems that we had in
inventory and under development. I was able to determine what the Rayleigh
parameters were in terms of the effort and the schedule, and once knowing that, I
could make projections out to the end of the curve which was essentially to the end
of the budgeting cycle. Within a month I was able to get about 50 large Army
development projects under control and able to do credible budget forecasts for
those projects - - at least five years in the future.

The next time the budget hearings came around a year later we were in the down
sizing phase at the end of the Viet Nam war; budget cuts were endemic, we were
asked to cut the application of effort on a number of existing systems. The turn
around was short; we had to respond to what the impact this would have within a
24 hour period.

Now, having the Rayleigh curve and understanding that methodology, I was able,
with a pocket calculator programmed with the Norden Rayleigh function, to quickly
make estimates of what would happen if we reduced the projections for several of
the projects. It was easy to show that the aggregate of these cuts would wipe out
the capability to start any new software projects in the Army for the next 3 years.

The result of that budget hearing - we did not lose any money.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 6

Naturally, the next important question that arose was, “How do I use these
Rayleigh equations to generate an estimate for a new project? It’s nice to be able to
pick up those that are already underway, but is there some way I can find out the
time and effort for a new project so I can build one of these budgeting and staffing
profiles for getting the work done?”

I looked into that. Right away the notion arose that somehow we had to be able to
relate the size of the Rayleigh curve - - its associated time and effort - - with the
amount of function that had to be created. How do people building software for the
Army - - in its own in-house organizations like the Army Computer Systems
Command, and their contractors - - how do those people think about the
functionality that they are creating?

I found out that they thought about the lines of code they had to write, they talked
a lot about the number of files they were creating, the number of reports they were
generating, the number of screens that they had to bring up - -.those types of
entities that were clearly related to the amount of functionality that had to be
created. Clearly these functional entities had to be related to the schedule and
effort to get the job done.

I spent the next year and a half to two years of my Army time, about a third to half
my daily schedule, doing analyses of data. The first set of data I worked with came
from the Army Computer Systems Command. It was 15-20 systems. I attempted to
do some mathematical curve fitting relating the size of those systems in lines of
code, in files, reports, screens to the known development schedules and the
associated person months of effort.

The first approach was to use simple regression analysis of functionality, lines of
code, as the independent variable and then person months of effort as the
dependent variable. I did the same thing with schedule.

Next I did some multiple regression analysis where I related effort to combinations
of lines of code, files, reports and screens. The statistical parameters that came out
showed they might be useful for predicting, but they were not extraordinarily good
fits. Certainly more work and investigation was needed before drawing any
conclusions.

By this point in time, 1975-1976, I had been in contact with other investigators
working in this area. Judy Clapp from the Mitre Corporation had done some
studies on 10 to 15 scientific and engineering systems that were being done for the
Electronics Systems Division of the Air Force Systems Command at Hanscom Air
Force Base. Felix and Walston at IBM Federal Systems Division had published a
paper in the IBM Systems Journal and had amassed a database of about 75
projects that gave a good feel for a range of different parameters related to software.
All of this information was very useful in trying to establish relationships between
lines of code, pages of documentation, time, effort and staffing.

In trying to do this analytical work I had to go back about 20 years to my academic
training at the Naval Post Graduate School to refresh my memory on how to do the

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 7

statistical analyses, how to do work with data, and to come up with some logical
inferences and conclusions as a result of that. There was a lot of re-learning to build
up skills that had become very rusty in the course of not using those techniques for
many years.

Software Equation
One of the very promising experiments was trying to do some multiple regression
analysis relating the size of the systems in lines of code to the schedule and the
person months of effort applied. I did these curve fits first with the Army data,
then with the Electronics Systems Division data followed by the IBM data. I was
lucky in that I got some very nice fits in about 20 of the Army data systems.
Concurrent with these curve fits, I also did some theoretical work on integrating
Rayleigh curves and tried to establish the parameters of integration from a little bit
of the historic data from the Army and IBM. I found there was good consistency in
being able to generate the key parameters for the Rayleigh equation - - the work
effort (area under the curve); and the schedule parameter. These different,
independent approaches at getting a parameter estimating equation were both
leading me in the same direction and producing similar results.

What ultimately fell out of this is what I now call the [QSM] software equation. It
related the amount of function that had to be created to the time and effort required
to do it. It looked like this:

Quantity of Function = Constant x Effort x Schedule

In the curve fitting process, I found that there were exponents associated with both
the time and effort parameter and there was also a constant that got generated in
the process. I thought a lot about what the physical meaning of this constant was.
Somehow it seemed to be related to the efficiency of the development organization,
or the technology which they were applying to their software development practices.
The first name I used to describe this empirically determined constant was a
Technology Factor. I used that term in the first early papers I wrote on this and
published by the IEEE Computer Society in the 1976-1977 time frame. I have
continued to use that parameter to represent the efficiency of the software
development organization. I have, over the years, re-named it several times - - first
a Technology Factor, then to a Technology Constant, then a Productivity Constant.
Our most recent name for this is the Process Productivity Parameter which I think
is probably the most descriptive term to use in describing what its real relationship
is to the software development process.

This was the genesis of my software equation which we still use today. It has
proven to be a very good measurement and estimating tool for me and QSM over
the past 20 years.

This software equation was a macro model that linked the amount of function to be
created to the management parameters of schedule and effort required to produce
it. The empirically determined factor represented the productive capability of the

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 8

organization doing the work. This also suggested that this was a very good way to
easily tune an estimating process because if you knew from your completed historic
projects, their size, time and effort, you could easily calculate what that process
productivity parameter was. Then you could use this calculated parameter in
making an estimate for a new project. So long as the environment, tools, methods,
practices, and skills of the people did not change dramatically from one project to
the next, this process of playing back historic data became a very useful, simple,
straight-forward calibration tool.

Manpower Buildup Equation
The other key relationship that emerged in these studies was the direct
relationship between time and effort. Clearly, these were the parameters of our
Rayleigh equation. But was there anything we could learn from the basic data as to
what this behavior characteristic was? Again, more curve fitting. I found that
there was a distinct relationship between the effort and the development schedule.
It turned out that the effort was proportional to the schedule cubed. This was also
something that had been noted and discovered earlier by Felix & Walston and
several other investigators who had done research in software cost estimating.

This finding was especially important because it now gave me the basis for making
estimates. I had two equations and two unknowns. The first was the software
equation involving size, time and effort and the process productivity parameter.
The second equation (which I now call the manpower build-up relationship) linked
effort with the third power of the development time.

This latter equation required some parametric determinations. We found a
parameter family that seemed to relate to the staffing style of the organization.
Those organizations which tended to use large teams of people build up their
staffing rapidly. This produces a high value of the ratio of effort divided by
development time cubed. Those organizations that worked in small teams took a
longer period of time to complete their development. This was typical of
engineering companies that tended to solve a sequential set of problems one step at
a time. For such companies I saw that the relationship of their effort divided by
development time cubed produced a much smaller number for the buildup
parameter. This was telling us is that there were different staffing styles that
organizations adopted. The parameter of effort divided by development time cubed
was really a measure of the manpower acceleration being applied to a software
project.

It became evident in studying these different types of organizations that those
organizations that use large teams of people seem to finish their projects a little bit
faster than those that used the small teams and took a little bit longer to complete
their work, all other things being equal. This suggested there was some sort of
trade-off going on between team size and how long it takes to get the work done.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 9

The other significant idea that I started working on during this period in the Army
was the notion of the Rayleigh curve being a good process control vehicle for
projects while they were under way. The idea was to take real data as it was
happening on a project and then update and adaptively forecast the right Rayleigh
curve to project onward from wherever the project was at the time. This would let
you dynamically predict cost, schedule and defects to completion of the project.

I did some early curve fitting investigations but ran into some problems and snags
that prevented this idea from being fully realized at this point in time.
Nevertheless, there was enough work and enough positive results to suggest that
this should to be pursued and had considerable promise. One other consideration
that was evident at this time was that not many people were interested in dynamic
control. Most organizations were having so much trouble trying to come up with
the initial forecast that the idea of learning about how to control an ongoing project
was not high on their priority list. This suggested that trying to reach good
solutions in dynamic measurement and control was premature.

Duty with Army Computer System Command
After my tour of duty in the Office of the Chief of Staff and with the Office of the
Assistant Secretary of the Army, Financial Management in the Pentagon, I was
transferred to the Army Computer Systems Command at Ft. Belvoir where I
continued to work on the software estimating problem and some useful ways in
which the Army could apply these techniques. I wrote several papers during this
time which were presented at forums sponsored by the IEEE Computer Society.
There appeared to be a growing interest in software estimation.

These papers produced contacts with other people in this area, such as Laz Belady
of IBM and Manny Lehman from City College in London. Manny suggested the
idea of doing a conference of interested parties to discuss the progress that was
being made. I was able to get the Army Computer Systems Command to sponsor
such a meeting which was held in the Spring of 1976 at the Airlie House in
Virginia. 50-60 participants from government and industry came together and
presented their latest thoughts and observations relating to software estimating.
Peter Norden was able to come and present his latest thoughts, as well as John
Gaffney, Ray Wolverton and other notables in the field.

During most of this period of time I continued to do small scale modeling
experiments using programmable calculators from Hewlett-Packard as the
computing device. I found this was preferable to time sharing services and using
the large scale computers available from the Army because it was so easy to
conceptualize things on paper and immediately write a small program to implement
it and see what the behavior pattern was. Moreover, I was not at the mercy of
programmers and waiting for them to write the programs that were needed. I could
do that myself, take the machine home and continue my work into the evening
without interruption. I found this a very efficient way to build and test algorithms.
When the algorithms worked on the HP calculator they could immediately be

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 10

implemented bug-free in FORTRAN or Basic on a medium to large machine for a
more comprehensive analysis.

During the 1976-1977 time frame, the Department of the Army decided to take the
early work I had done on determining parameters for the Rayleigh curve and put
those ideas out for broad distribution throughout the Army. They did this in the
form of a Department of the Army pamphlet. These parameter estimators were
based on the number of files, number of reports, number of screens to determine the
effort and the time parameter for the Rayleigh equation. This happened about the
time that I was doing most of the development and testing work on the software
equation, but it wasn’t ready for full scale implementation and use at that point in
time. The Army decided to proceed ahead with their information pamphlet using
the earlier work.

During the first half of 1977 I did considerable development work on the
implementation of the software equation involving the linking together of the effort
and time parameters of the Rayleigh equation and relating those two management
parameters with the amount of functionality that had to be delivered. I did
extensive work with a family of parameter values for the technology factor, later
called the process productivity parameter. I also tried to learn over what range of
software application types this factor pertained to. We had some reasonable data
for the Army’s business systems, some reasonable values for some of the Air Force
Command & Control and Radar Control projects from Hanscom Air Force Base and
some engineering applications from the IBM FSD suite of data. Much of my
research time during 1977 was devoted to validating and testing reasonableness
ranges for parameters that seemed to describe these different application
environments.

GE Days
At the end of August 1977 I retired from active duty in the Army and shortly
afterwards went to work with the Space Division of General Electric Company in
their office located in Arlington, Virginia. I was with General Electric a little less
than a year but continued to develop the model, apply it to estimates that were
used by General Electric in some of their software development activities related to
the space program, and a considerable amount of time working on estimates related
to large scale manufacturing software that was being built in support of the GE
Aircraft Engine Division in Evendale, Ohio.

One important aspect of the software equation arose during this period when I
established contact with Professor Victor Basili at the University of Maryland. He
was doing work with NASA Goddard Space Flight Center and was one of the
principles in their software engineering laboratory. In my conversations with
Professor Basili, I found that they had collected a substantial body of data related
to scientific data reduction systems for satellites being launched and controlled by
NASA. Most of this software was being written in FORTRAN; the size regime was
significantly smaller than the systems I had been working with in the Army,

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 11

notably in the range 15,000 to 80,000 FORTRAN lines of code. I observed that the
Rayleigh staffing profiles were quite different than I had seen in the Army. Most of
the Army Rayleigh curves reached their peak staffing at about the time the
software was ready to ship. The NASA Goddard software reached its peak staffing
intensity considerably before the software ship time. By then the staffing profile
had come down and the number of people was at a relatively low level at the time
the software went into operational service. This suggested that the Rayleigh model
was more complex than I had originally thought and would require an additional
parameter that would control where the peak of the Rayleigh curve occurred as a
function of how big the software product was.

So I spent some time providing an additional parameter in the software equation to
control this peaking and tried to interpret what the physical meaning of that
parameter was. Ultimately, I came to call it a complexity factor. It seemed to kick
in when the size of the system was in the neighborhood of 15 to 18,000 lines of code.
Most of the change in the Rayleigh shape occurred between 18,000 lines of code and
70 thousand lines of code. Beyond that size I found that the behavior of the
Rayleigh shape seemed very much the same as that I observed in the Army. That
is, it reached its peak staffing at about the time the software product was ready to
put into operational service.

During the time I was at General Electric I met Ann Fitzsimmons who was a
FORTRAN programmer working for GE. She was very helpful in building some
early prototype models of the Rayleigh equation, the software equation, and simple
prototype estimating models. Ann became interested in pursuing an opportunity to
turn these ideas into a commercial product. She suggested that we leave General
Electric, organize a company and try to build a commercial estimating tool. This
was based on her observation that there was considerable interest in such a
product, because we had been getting a number of inquiries and phone calls, both
within General Electric and externally from other companies that we had met
through conferences or through papers that she and I had written individually and
which had been published in the technical and trade press.

So while I was mulling over these suggestions from Ann, I was developing a
business plan and looking at how I might raise money to form up a company and
start a business from the ideas we had come up with for estimating tools. Ann
precipitated the whole thing by announcing that she had quit GE and was ready to
go to work full-time building this system. It took me about two more weeks to make
up my mind, resign, and start the process of getting Quantitative Software
Management Inc. underway.

Noisy Data
My Army and General Electric experience pointed out rather clearly that there was
a great deal of noise in the data we were collecting. In particular, organizations
were unable to report the time more accurately than a whole month. Sometimes
the person months would be rounded off to the nearest 5 or 10 person months. This

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 12

suggested that as I considered the notion of creating commercial products, this had
to be researched and addressed. I would have to learn how to deal with this
uncertainty and be able to reflect it in the answers and risk buffering that would
need to be done.

QSM Days
The first version of SLIM® was built on a DEC System 20 time sharing machine
belonging to American Management Systems. It was written in FORTRAN by Ann
Fitzsimmons and was about 8,000 lines of code. It was designed to be as simple as
possible to use and require a minimal amount of user supplied input information.

The notion of being able to specifically tune the model to the development
organization was very much on my mind at this point in time. So, what we did was
include a history (calibrate) function in which the user could collect a little historic
data - - as simple as the number of new or modified lines of code, the development
time and the person months of development effort that had gone into producing a
completed project. This could then be put into the software equation and a process
productivity parameter determined from this.

We also decided that we would use the concept of a Productivity Index, a simple
series of integer numbers from 1 to 18 as a surrogate for the engineering family of
numbers called technology factors. This was designed to make it easy to use and
simple for managers to understand. Once the user had a Productivity Index from
3,4,5 or more previous projects and was tuned to the right environment, then all
they had to supply was the SLOC size estimate in the form of a range - - the
smallest, the largest, the best guess. The user could either do this for a whole
system, or break it up into a number of subsystems and SLIM® would roll up the
individual subsystems for him/her.

The earliest version of SLIM® generated a minimum time solution. This was the
fastest possible solution. It would also be the most expensive. Uncertainty was
present; therefore, it was important to do a Monte Carlo simulation where the
uncertainty that existed with respect to the size and the Productivity Index could be
factored into the simulation and mapped through to the outputs of development
time, peak staffing, development effort and cost. These uncertainties in the form of
standard deviations could then be applied in a risk sense so that if someone needed
a 95% cost biased number to quote to a prospective customer, that could be easily
obtained. SLIM® provided this in the form of risk tables. Similar capability was
provided for schedule and staffing profiles.

The software equation provided a solution in the form of time-effort pairs. There
were a range of different staffing profiles possible. If one took a little longer time, a
smaller staff could be used; This let the effort go down. Since the relationship
between time and effort varied as the fourth power of schedule, a small change in
time produced a big change in effort. This appeared to be exploitable by
management so within SLIM® we built a range of ‘what-if’ functions that had a

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 13

great deal of power in being able to use the concept of management constraints and
trade-off. For example, let’s say the minimum time solution turned out to be 21
months and 388 person months of effort and built up to a peak staffing of 29 people.
But we might find out that only 15 people were going to be available to work on this
project. The implication here is that it will take a little bit longer time and quite a
bit less effort if a solution could be found for a peak staff of 15 people.

We provided a trade-off function that allowed the user to directly input a peak staff
of 15 people and the output produced the appropriate time-effort pair associated
with that staffing profile(250 PM, 25.7 Months).

A whole range of such trade-off scenarios were presented - - design to schedule,
design to cost, design to peak manpower, design to a certain level of risk on
schedule, etc. All of these were very simple trade-off relationships in a time
sharing environment. A user picked the appropriate one from the menu and was
then prompted for the appropriate inputs; the computer immediately calculated the
solution and brought it up on the screen or printed it out onto the terminal.

With this version of SLIM all of the output was in tabular form. There was no
graphics capability. There were no remote output devices that could handle data
quickly enough to make high quality graphics a feasible capability to provide. This
was because at this point in time we had 300 baud terminals which were very slow
in graphics mode. Similarly, plotters were hardly able to be serviced at these data
communication rates.

We started building the first version of SLIM in September of 1978. We had a
working proto-type version of it by December of 1978 and were able to provide beta
versions for prospective customers by January 1979. The system ran well on the
DEC System 20. It was accessible from anywhere in the country through Telenet
and the reliability of the system was quite high. The time to solve a problem using
this system was typically 30 to 45 minutes to get every answer that one could think
of.

A family of implementation functions were provided as output. Once a user made a
decision for a schedule, effort and peak staffing that they desired for their solution,
then complete staffing profile month by month, including the high level functional
front end and the main software build and the maintenance work could be provided
throughout the entire life cycle. The person months of effort could be given in this
same tabular form. If you wanted the cost for just a single fiscal year, you could get
that cost. If you wanted the cost over the whole life cycle, that was possible. If you
wanted just the development effort for the main software construction phase, that
was possible as well. It was a very flexible tool. Anything that you wanted as a
function of elapsed calendar time, month by month, was possible to obtain.

HP 85 Version of SLIM
We used the DEC System 20 for about two years. About that point in time the new
HP-85, typewriter size, desktop machine with built-in Basic language became

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 14

available. This appeared to be an ideal piece of hardware for us to build a portable
version of SLIM. Going from FORTRAN to Basic was not a problem. The chief
advantage one had with the HP-85 desktop computer was that it had built in
graphics. It had a small-format, built-in printer as well, that had the capability of
turning graphics output on its side and printing out a very acceptable, readable
graph of all of the functions that were important in the SLIM environment.

About 1980-1981 we came across a body of data from the Rome Air Development
Center that had defect information that led us to construct a reliability model and
that was tied in with the schedule, effort and size of the software product. This
gave us a capability to make a reliability prediction model that would estimate the
defects that should occur in development. Defect prediction was useful from as
early as the start of systems integration test out to the time the product was
delivered to the customer, and even out into the operations and maintenance phase
after that. The reliability model seemed to be very Raleigh-like so we built it as a
time-based Raleigh defect model.

We discovered that the defects were very closely correlated with the productivity
index, such that if an organization was very efficient (a high productivity index)
then it also had a correspondingly small number of defects. The other interesting
observation was that if you used a large team of people (a high manpower build-up
profile) then you also got a correspondingly large increase in the number of defects.
We built the model in such a way that the projected number of defects would scale
corresponding to these parameters - - the staffing profile and the a productivity
index. We included the reliability model in our first HP-85 version of SLIM.

The HP-85 was very easy to use, very easy to write code for, and easy to make
modifications to code. The quality of the output was not ideally suited to business
users needs. The 32 character format for the tables was not standard; but soon HP
came out with the HP-86 and 87 series of computers which had the same processor
and the same Basic language but had the capability to provide full-page, 80
character, output and a large scale graphic capability driven out to pen plotters.
Soon, very high quality output was available from these companion pieces to the
HP desktop line. We also found that these desktop machines got around people’s
concerns about storing their proprietary data on a time sharing machine where
they worried about their competitors gaining access to their data.

The reliability function gave good results from the outset and has been an excellent
predictor of what one might expect in the way of defects month-by-month while
development is going on. It gives a good indication of when the product is going to
be good enough to put into operational service.

I felt this was a very important because it got development organizations away from
the strong tendency to deliver a product early before sufficient defects had been
removed from the product. When this happened the product did not work well or
run long enough to do its job. In most cases this was because the product had not
been sufficiently de-bugged and tested to guarantee good levels of performance and

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 15

reliability. With the reliability function we now had the capability to measure this
while development was going on and let people control defect elimination far better
that they had been able to do previously.

Linear Program
I also developed the notion of being able to apply a linear program to the software
estimation model. The idea is we have the software equation and we have an array
of different constraints. We could use the constraints in the same way people did in
a linear program to bound a feasible region. From this we got a minimum time
solution which was also the most costly and had the lowest reliability. At the other
end of the spectrum we got a minimum cost solution which took the longest time
and had the highest reliability. In between these two solutions were all other
feasible solutions. One might choose to adopt one of these in between solutions
because of other concerns.

So Linear Programming became an extraordinarily powerful tool to identify this
feasible region and then pick and choose other possible solutions within this range,
depending upon the priority of management constraints. It was important to be
able to tie management constraints into the normal operating routine in solving
estimating problems. A picture of the linear program in the two management
dimensions is shown in the following diagram.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 16

Minimum
Development

Time

130% of
Minimum

Operating
Region

Impossible
Region

Impractical
Region

Log Effort

Log Schedule

Size /Productivity Line

Uncertainty
Drift

Manpower Buildup Eqn

Max. Peak Manpower

Min. Peak Manpower

Max. Schedule

Max. $
Cost

Linear Program Concept

Figure 2. Linear Program concept.

The HP-85 capability with graphics also led us into the notion of looking at the
historic data in a graphical format. We found that we had a fairly substantial
database of completed projects by that time, maybe 500-600 systems. When we put
those all into the history mode of SLIM we found that there was a nice pattern that
emerged. We identified the spectrum of person months of effort as a function of
system size that had gone into all the historic projects; we did the same thing for
numbers of people working on projects, and the development schedule. These
graphs were very informative in outlining what the feasible region was. We also
put statistically generated trend lines on a log-log scale through these data points.
We could take away the historic data points, leave the trendlines in place, and then
take a small set of data - 3,4,5 projects from a specific organization and plot them
against the trendlines. From this we could see how that organization behaved with
respect to the industry average. For example, if a particular organization was
taking longer than the industry average, was costing more, then we found that
their productivity index was significantly lower than the industry average. This let
us say “We see that this particular developer is not as efficient; he takes longer, he
costs more, he generates more defects.”

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 17

This graphical technique gave us a quick way to compare development
organizations with each other and with the broader context of the whole industry
represented by the trendlines of our large database. This concept became the basis
for our next product, PADS, the productivity analysis database system.

PADS® - Productivity Analysis Database System
We started work on PADS® about 1982. We introduced it into operational service in
1984. It was a desktop based system, initially done on the IBM PC under DOS and
it utilized the graphics capability that was provided by the IBM PC family.

PADS® provided the capability to keep track of an organization’s productivity over
time by continuously computing the productivity index and being able to associate
that at particular points in time and with the environment, the tools, the skills and
the management capabilities of an organization. So, beyond being able to say this
is the productivity of XYZ Corporation, PADS would let you say these are the
environmental influences that probably had a large impact on why XYZ
Corporation is where they are now.

With PADS it was possible to study the introduction of new technology, new
products, new management practices and see if those produced an impact on the
productivity index. For example, we studied a number of developers when they
went from developing in batch mode in COBOL to an on-line interactive
development environment. The immediate impact was to boost the productivity
index by 2 to 3 integer values - - a very significant reduction in the management
parameters. For example, 3 productivity indices would bring down development
time by about 26% and cut the development effort by a factor of 59%.

 PADS provided the capability for long term studies of software behavior. It became
a repository for an organization’s software metrics data. It had an excellent
capability to do economic analysis - - to see what the high pay off investments and
practices.

SIZE PLANNER
By 1984-1985 we found that we were getting considerable number of questions
related to sizing. People were happy with the results they were getting from SLIM
on schedule, effort, cost and implementation plans but they still had trouble coming
up with the estimates of size that needed to be fed into SLIM as input.

In my consulting experience I had come across a number of ways of approaching
this. I decided it would be good for us to develop a sizing model and include it with
the estimating package, SLIM for people that felt they needed it. A large number
of customers had no problem with sizing. So, there was no need to get them to buy
it when they had no need for it. That guided us into making it a separate product.
We would sell it to just those people that felt they needed some supplemental help
in coming to grips with the sizing input to SLIM.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 18

We built an independent, DOS-based product for the IBM PC which we called SIZE
PLANNER. It was a fairly small utility of program designed to come up with
combined estimates from a number of different approaches.

For example, a user could make estimates in function points, lines of code,
programs, and sub-systems. Or, very early in the process, the user could use fuzzy
logic sizing based on historical data in QSM’s database. SIZE PLANNER could
even handle re-used code, some of which was modified, some of which was
unmodified. SIZE PLANNER would convert this all into an equivalent line of code
estimate in the form of a Low, a High and a Most Likely that was suitable to input
into SLIM. It was introduced for sale in 1987.

SIZE PLANNER did a good job. I used it quite frequently in consulting. A good
number of our customers that felt they wanted a cross-check for their size
estimates, or did not feel comfortable with their existing methods, adopted it and
found they got excellent results. Essentially, SIZE PLANNER was a front-end for
SLIM, or other estimating tools.

SLIM-Control®
By 1986 there was considerable interest in being able to control ongoing projects.
Many organizations would start a development and then find they couldn’t stay up
with the original plan formulated, or they couldn’t get the people as fast as they
anticipated. After the first 30% of the project they would sense that they were
falling behind but didn’t have any idea how much. They didn’t know when the
project was really going to be completed. If they could get all the people they
wanted, could they throw more people on it and catch up? These were the problems
that we wanted to be able to address with a new product which we named SLIM-
Control®.

The concept was to use statistical process control ideas from the manufacturing
area of expertise and tie it together with the notion of adaptive forecasting. This
would let us feed in the actual data coming from the project, compare it with the
plan, and then generate a new plan that would realistically project when the project
was going to get there, what the staffing should be, what the cost would be to that
new end point, and make a reliability prediction as well. All of this would be
consistent with the underlying SLIM model.

SLIM-Control was difficult to do. It was hard to get the algorithms to work well
together. It was also difficult to model the impact of playing “what-if “ games. For
example, if I am half way through a project and I know I am falling behind where
the predicted slippage is 2 ½ months, what would happen if I added an additional
15 people to the project? How much of the lost time could I make up?

These were the issues we were trying to model. Since everything was happening
dynamically month-by-month, the algorithms had to be responsive to where you
were along the time line. The model had to have different sensitivities at different
points in time because things that were done earlier in the process would have far

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 19

more impact. Adding 15 people after all the code was written doesn’t help much;
there is not a great deal one can do to influence the project and play catch-up at
that point in time.

So, it was not a simple process to model. It took us about 3 years to complete the
development of SLIM-Control. When it did get out into our user community, we
found it was well liked, did an excellent job of prediction and filled an important
void in the ability to deal with software development projects once they were
underway. It suggested intelligent things to do that could be quantitatively
determined from what had happened so far. SLIM-Control came on the scene in
1989. This was the last completely new product introduced within the QSM family
of tools to date.

Windows Products
By the early part of the 1990s we saw some new trends that suggested major
changes to our product line. Most important were the advent of the Windows
operating system, higher resolution screens and much faster processors. Suddenly
the opportunity to make very major improvements to the user interface and provide
higher quality color graphics output became possible. That became our next goal --
take our product line and convert it over to the Windows environment and make
the user interface much more intuitive and natural for the user.

All this meant that the user now had the opportunity to solve the problem the way
he wanted to approach it, not in the serial, sequential fashion that we had forced
him to do with the old DOS products. With the DOS products the user had to think
the way the developer did. He did not always do that naturally. It presented a
frustrating dilemma at times. Windows, VGA resolution and the high speed of the
new processors provided the ability to get much more information on the screen.
With a mouse the user could attack the problem in any way he liked, his own way.
He could solve the problem in a way that made the most sense to him. That was
the driving motivation for how we did our products over in the Windows
environment.

With the Windows version of SLIM we were able to innovate by providing new
ways for analysts to look at their solution and compare it with the industry
trendlines taken from PADS. The user could even superimpose his own data on the
industry trendlines. This could be useful when a marketing manager proposed an
impossibly short schedule. When this solution was generated with SLIM (perhaps
requiring a productivity index that was 4 or 5 values higher than the organization
had every done before) it could be shown graphically and the probability of this
solution could be seen right on the screen. The very short schedule would be very
much out of line with anything the organization had been able to do before. So,
with the graphical view it became immediately obvious that this was not a good
solution. It was not likely to happen.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 20

Similarly, we were able to put a graphical consistency check in for schedule, effort,
staffing and defects. This let the analyst and his boss look at the solutions and see
if they were consistent with what other people were doing as well as with their own
historic data.

In addition to this there was considerable interest in doing sensitivity profiling in
the form of “What-Ifs.” The question might come up “what if this product were to
grow by an additional 25,000 lines of code? What would that do to our schedule?
What would that do to the cost and the effort? We were able to put in a sensitivity
capability to look at these issues graphically and see what the incremental
differences were. We could do that in terms of size, productivity index or staffing.
All of this provided a very quick capability to explore ‘what-if’ situations that might
be posed by management.

The other major Windows innovation was putting dynamic risk gauges on the
problem solving screen. If one wanted to play “what-if” on the schedule one could
grab a handle on the staffing diagram and make it longer or shorter. In the lower
left hand corner of the screen we were able to display a probability scale for each of
the key management parameters -- schedule, effort, maximum peak staff, minimum
peak staff and Mean Time To Defect. As the user changed the plan with respect to
schedule and its effect on staffing and effort, he could instantly see the way in
which the risk gauges moved. So, if I happened to have a 24 month constraint on
schedule and I stretched the schedule out, I would see my probability gauge for
schedule go down. This gave us a capability to keep the different risks balanced;
being able to see it visually all at one time gave a much better appreciation of the
interaction of these different management impacts.

Summary
I have been involved in software estimating for 20 years. Much has occurred in the
field over that time. I have found it exciting to try to understand the software
development process and how to model that. Thinking back, I believe looking at it
as a time based, parameter-driven, macro-model has been a good approach that has
been close enough to reality to produce excellent results with enough flexibility to
adapt to the new development paradigms that have arisen. I am confident that it
will continue to do so for a reasonable time into the future.

I have found that the software estimating and control problem was a lot more
complicated than I originally thought it would be. But that has kept it challenging
and interesting.

Moreover, it has been gratifying to have worked with major corporations and
government organizations in the US and abroad; to have tackled some of their
tough problems in software planning and management and to have been able to
contribute to solving their problems and to have had a positive impact on their
business. This had made all the hard work worthwhile.

Larry Putnam’s Interest in Software Estimating, Version 3

© Copyright Quantitative Software Management, Inc. 1996 21

Publications
Publications which I have written or have been co-author include the first book
done for the IEEE Computer Society entitled “Software Cost Estimating and Life
Cycle Control: Getting the Management Numbers” published in 1980. This was
done with Ware Myers who has been my writing sidekick since that time. This
book was an assembly of my key thoughts on software estimating at that particular
time, along with a collection of germinal papers on software estimating either done
by myself or other authors.

The next book which I co-authored with Ware Myers was Measures for Excellence:
Reliable Software On Time Within Budget published by Prentice Hall in 1992. This
was a complete statement of my entire philosophy of estimating control and
measurement as I understood it at that point in time, 1990-1991. It also included
some capability to implement the QSM techniques by manual methods, with a
calculator. Also shown was an extensive collection of computer generated output
from SLIM and SLIM-Control as an illustration of the way in which we have
implemented the key functions in our commercial tools.

The most recent publication is a management oriented book done by the IEEE
Computer Society entitled, “Executive Briefing: Controlling Software Development”,
again by myself and Ware Myers. This was published in 1996. It’s a 12 chapter
book focused at senior management. The objective was to present the key ideas
with a minimum of mathematics and diagrams, with just the key management
concepts to get across the idea that it is possible to control software projects. That
there are a few simple things you need to know about how software projects behave.
These concepts are straight forward and work with all the traditional, straight-
forward, well-understood management practices.

In addition to these books I have written a large number of papers, by myself or
jointly with others, related to specific topics in software estimating. Copies of these
are available from Quantitative Software Management, 2000 Corporate Ridge -
Suite 900, McLean, VA 22102.

