
Familiar Metric Management: Software Reuse
“While reuse has long been more of a hope than a promise, the greatest opportunity for dramatic productivity 
and quality improvement will be through improved ways to build new software on the progressively richer 
foundation of previously produced products.”  Watts S. Humphrey [fn]Watts S. Humphrey, Managing the 
Software Process, Addison-Wesley, Reading, MA, 1989.[/fn]

In the late 1980s when Humphrey was writing, reuse was still largely a hope, though even then some companies 
were making progress. It was still a hope for most companies in 1996 when Ed Yourdon estimated that the 
“passive” approach “typically hovers at the 15 to 20 percent level.” [fn]Edward Yourdon, Rise & Resurrection 
of the American Programmer, Prentice Hall, Upper Saddle River, NJ, 1996[/fn]  By “passive” he meant a 
developer reusing some of his or her own code or the code of nearby coworkers. There was no “active” reuse 
program. It was still a hope in 1996 when Paul Bassett estimated that five sixths of companies fell on what he 
called Organizational Reuse Maturity Level 1, Ad Hoc. [fn] Paul G. Bassett, Framing Software Reuse: Lessons 
from the Real World, Prentice Hall, Upper Saddle River, NJ, 1996.[/fn] That level means that typical reuse is in 
the 0 to 40 percent range.

The promise is beginning to appear here and there. For instance, in 1992 Malcolm Rix reported to the Workshop 
on Software Reuse that Hewlett Packard had achieved 60 percent reuse on one instrument line. In 1996 Bassett 
wrote that the most recent QSM study of companies employing his frame technology methods found an average 
productivity index of 26.9, up from the 26.2 reported by the 1994 study. (Average of all business systems in the 
QSM database is 16.9.) Included in this study was a project at Automated Financial Systems Inc. with a 
productivity index of 33.1. That is one of the two or three highest ever recorded by QSM.  The company made 
this record on a 635,363 SLOC check-clearing system which achieved 91 percent reuse. We could cite more 
examples. There are enough companies achieving reuse at these levels to establish that it can be done.

Peering into the future

It is becoming more essential that reuse be done, too.  Many companies are reengineering their business 
processes. Reengineering a single process is ordinarily a task of some months -- or it would be if the supporting 
software could be developed on that time scale.  There is little advantage to be gained from reengineering a 
process in months, if the software to implement it takes years. Automated Financial Systems completed its 
project in five months. Done in the usual fashion, with industry-average productivity, it would have taken 51 
months.

On both measures, percent-of-reuse and time-to-completion, this company achieved a factor-of-10 gain, or so it 
seems.  Wait a minute! Where did that reusable software come from? How much did it cost to build it? How 
long did it take?  When we take questions like these into consideration, we see that reuse is not free. Of course, 
this being a metrics newsletter, you will not be surprised to find that it takes metrics to answer these questions. 
First, we have to inquire a little bit into what comes before the actual act of reuse.



A company has to stake out a domain-a potential set of application systems-for which reuse looks promising. It 
has to lay out the beginning of the architecture that will characterize these systems, as well as systems that are 
yet to come. It has to sort out of this architecture subsystems that will be common, or nearly so, to most of these 
application systems. The term, component systems, seems to be coming into use to describe these reusable 
subsystems.

Then it has to develop these component systems.  One aspect of this development is to design in points of 
variation, so that one component system fits into many slightly different applications. It has to warehouse these 
component systems in a repository from which they can be obtained by the developers of each application 
system.

When all of this is accomplished skillfully, the application developers can indeed achieve 91 percent reuse in 
five months. It may not have escaped your notice, however, that domain analysis, architecture, component 
development, and repository support cost money and take time.  Indeed, experience suggests that it may take 
two or three years of investment in these processes before the gains from reuse begin to pay off, as the figure 
illustrates. It is possible to shorten this investment period if you can buy suitable component systems on the 
market, instead of developing them in house. In that case, they still cost money. Moreover, they take time and 
money to learn to use skillfully.



Peering into the unfamiliar



Up to now the software industry has developed software for the most part in one-of a-kind projects. The 
management numbers—size, effort, development time, defect rate, and process productivity—applied to a 
single project. Under conditions of reuse, software development will be spread over domain analysis, 
architecture planning, component systems development, and component support, before it gets to the actual 
project that develops an application system. Will this require a change in metrics?

Let’s start at the back end. The development of application systems is comparable to present project-based 
development-with some differences. In fact, there are two main differences. The first is that part of the 
requirements analysis and architecture planning has already been taken care of at the domain level. The 
application developers still have to specialize the requirements and the architecture to their particular situation. 
The second difference is that the component system developers have provided a selection of reusable 
components. The application developers still have to perceive the need for a component system, find it, 
understand how it works, and in many cases specialize it (set the variation mechanisms) for their application.

Still, from a measurement perspective, the application development organization does turn out a system. The 
code or the function points can be counted. The time and effort can be measured. The process productivity index 
can be computed.  When we do this for a project such as the check-clearing system, what we will call the “total” 
productivity index turns out to be very high, in this case, 33.1.  We can regard it as a reflection of the value of 
reuse.

The developers on this project, however, actually produced only 56,592 SLOC. The rest of the 635,363 SLOC 
was reused. Giving them credit only for the code they actually produced reduces their productivity index to 
22.9. That is still way above average. They were doing a good job, but it was not up in the stratosphere. Let’s 
call it the “working” productivity index. We can use it to estimate time, effort, and defects for the new part of 
the project. We can use these estimates to control the progress of the application project.

Let’s move upstream now to the development of a component system. The efforts of these developers show up 
after measurable time and effort in code that can be counted. Therefore, we can compute their process 
productivity.  There is a Catch 22. It is harder to develop a component system than an application system. The 
component system has to be capable of variation (so it can fit in widely). It has to be of high reliability (so that 
application developers will trust it).

That leads to the current rule of thumb: it takes about three times as much time and effort to develop a reusable 
component system as a comparable non-reusable system at the application level.  That implies that the 
productivity index of a component system project is going to be considerably lower than that of a comparable 
application system. (It also implies that a component system has to be used three times before it has amortized 
its cost.)  So, it won’t be fair for management to hold component developers to the same productivity standard 
as application developers. This relatively low productivity index will, however, be an appropriate guide to the 
planning and control of component system development itself.


