
Familiar Metric Management –
Get Yourself a Little Whip!

Lawrence H. Putnam

Ware Myers

This isn't croquet we're playing here. It's more like a horse race. There is money riding
on it. A great big whip that bloodies the horse's flank and diverts its mind from the task at
hand, running faster, is counter productive. Similarly, great big whips like 80-hour weeks
may tire the mind to the point where very difficult work is beyond the reach of those
dulled minds. You have all seen, perhaps experienced, examples of this phenomenon.

The little whip we have in mind is metrics. Perhaps those of you reading this newsletter
already subscribe to their great value. However, plenty of your brothers and sisters in the
noble work of software development remain to be persuaded. In fact, the metric situation
may be getting worse. Howard Rubin concluded (November 1998 ITMS), on the basis
of data from 426 organizations reporting 1998 data, that "rigor in the world of software
and systems is in a state of general decline, with the strongest decline in the US!" He
based this conclusion on less use of lifecycle methods, metrics, process groups, and
quality assurance by those reporting.

What is work?

Left to its own devices, in the absence of a little whip, we sleep late, eat a lot of junk
food, and watch mindless television. What did you do last Sunday? On Monday,
however, most of us have to drag ourselves out of this sloth and get some work done.
Work is constrained by four factors:

• Time, because the product of our time has to get to market as soon as the
product of other people's time;

• Effort, because our work time has a cost--our pay and our overhead--that has to
be recovered;

• Productivity, because our work product has to be no more expensive than those
of competitors;

• Quality, because poor quality work products don't compete successfully.

Since the human race left Eden (or the warmth of Africa, if you prefer), it has had to work
to live. At first, very likely, the relationship between work and living another day was
quite plain--we got hungry. Then we invented money and with money on hand, we could
eat a while. Money--or profit--is still a potent driving force in small businesses. Then
double-entry bookkeeping, in fourteenth century Venice, enabled proprietors to keep
control of larger businesses. The "profit" motive still drives a fair percentage of the
population and stock options permit a small percentage of the people in large
organizations to feel that pull. People in small software startups with an ownership
interest feel that incentive. For most of us, working in large organizations, "profit" is a

2

remote possibility, even if we have a little stock. We need something more immediate,
both to work by and to manage with.

That something is productivity

The difficulty is that we human beings have always had a lot of trouble reducing the
concept of productivity to a number, a metric, that could spur us. Ancient farmers
learned in the first few seasons of growing the new crops that hard work was only part of
the answer. There was also the amount of rain, the quality of the soil, and the absence
of searing heat.

Manufacturing productivity looked to be more straightforward.. You divided the number
of pieces produced by the number of person-hours worked. Pieces per person-hour
looked like a measure of productivity. Then you found that searching for the raw
materials took unpredictable amounts of time or money, tools broke, machines got out of
tolerance, and some pieces were defective. It got complicated.

One approach to measuring software productivity is analogous to manufacturing
productivity, count the pieces produced. The "piece" selected for counting is usually the
source line of code, or in many IT organizations, Function Points. That gives us what we
will call "conventional productivity," SLOC/person-month, or Function Points/person-
month. Let's see what the QSM database can tell us about this measure. Figure 1 plots
SLOC against person-months (both on log log scales). Each dot represents a project. If
we imagine a centerline passing through the center of gravity of the mass of dots, we
see that it slopes upward to the right. In other words, it takes more effort to build larger
systems. Well, we sort of suspected that!

3

Non-linear Effort Behavior

QSM Mixed Application Data Base

Effective Source Lines of Code

P
e
r
s
o
n

M
o
n
t
h
s

0.01

0.1

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000 10000000

Figure 1. The entire QSM database--business systems, engineering systems, and real-time systems--is
represented in this log log diagram. On a conventional linear scale plot, that is, not log log, the blob of dots
would be concave upward, indicating that the mathematics underlying the relationship between effort and
size is nonlinear.

At any one system size, however, note the wide vertical dispersion of the dots. For
example, at 100,000 SLOC, effort ranges from a low of 10 person-months to a high of
2500 pm. In view of this great (vertical) range, there must be other factors influencing
conventional productivity besides project size. Of course, we all know as a matter of
working knowledge that there are many such factors--developer skill, management
knowhow, getting the requirements right, and a dozen or more others, depending on
how we group and define them. In fact, these factors, whatever they may be, probably
constitute that elusive property, software productivity, that we are trying to nail down.

Before we go into that, however, let us take one more look at conventional productivity. If
a software organization always did projects of about 100,000 SLOC of about the same
complexity, in pretty much the same application area, with pretty much the same crew of
people, in pretty much the same way, then it would have pretty much the same
conventional productivity from one project to the next. Its conventional productivity would
fall on nearly the same point in the blob of Figure 1. It wouldn't be a bad figure with
which to estimate the next job. That is probably why conventional productivity has lasted
all these years.

4

Suppose the next project coming up is a different size. Suppose it is 10,000 SLOC rather
than the 100,000 SLOC the organization is accustomed to doing. The estimator could
slide down the blob (to the left) and pick a different operating point. A point about half
way up the blob would yield the ratio, 10,000 SLOC/30 pm, yielding a conventional
productivity of about 333 SLOC/pm.

Suppose the estimator knew from experience that the particular project organization
seemed to be more productive than the average project organization. He could pick an
operating point a little lower in the blob, say, by planning to use only 10 PM of effort.
Then the conventional productivity would be 10,000 SLOC/10 pm, or about 1,000
SLOC/pm.

Obviously, trying to pick an operating point out of the blob, based largely on judgment,
would not be a reliable guide to the next estimate. Still, it would be better than the blind
use of a single conventional-productivity value.

As we have just seen, if an organization faces different size projects, in different
application areas, with various teams employing different processes (or no process at
all), its conventional productivity wanders around in the blob of Figure 1. The
conventional productivity of the last project is not likely to be the conventional
productivity of the next project to be estimated.

We need a better measure of productivity

In Figure 1 we represented only two of the four variables with which we opened this
column: size and effort. Let's bring in time. Figure 2 plots size against development time,
again on log log scales. This blob tells us two things. Development time increases with
system size. No big surprise. Development time at any given system size spreads
across a large (vertical) dispersion. For instance, at about 10,000 SLOC, development
time ranges from about two months to 80 months.

5

Non-linear Schedule Behavior

QSM Mixed Application Data Base

Effective Source Lines of Code

C
a
l
e
n
d
a
r

M
o
n
t
h
s

0.1

1

10

100

1000

100 1000 10000 100000 1000000 10000000

Figure 2. This figure demonstrates two points: larger systems take more time, and at any given size
development time varies widely.

Let us put the four factors which we identified as constraining work in one relationship:

Work product (at a Quality level) = Effort over a Time interval at a Productivity level

Can this relationship be adapted to the metrics of software production? Work product (or
quantity of function produced) is usually presented numerically in source lines of code.
People also use function points, modules, subsystems, use cases, requirements "shall"
statements, and other groupings. Essentially these are all representations of functionality
in terms of size. Quality tends to be more amorphous, hard to reduce to a numerical
measure. We have used defects per month and mean time to failure as partial stand-ins
for quality.

We can represent Effort as the time in person-hours, person-days, or person-years put
in by developers. Time is the calendar time in months or years the development takes.
Productivity looks like it is going to be harder to attach a number to, as we have already
discovered. Hang on for a minute. We'll get to it.

We also have two more facts to make use of. First, the relationship appears to be
nonlinear, as the log log diagrams make clear. Second, time appears to be part of the
software development relationship, as Fred Brooks observed a generation ago in The
Mythical Man-Month. That should not surprise us, as time appears as one of the factors
in the work relationship.

6

Therefore, it seems that we should have an equation representing software production of
the following form:

Work product (at a Quality level) = Efforta x Timeb x Process Productivity

The work product (actually a representation of its functionality) is measured in some unit
of size, generally source lines of code. Since the equation is to be nonlinear, we gave
the effort and time terms exponents. Productivity is the great unknown, except that we
know that conventional productivity will not be a good fit. So we changed its name to
Process Productivity as a stand-in for some new entity. We are now down to three things
we haven't nailed down: the two exponents, a and b, and process productivity.

The final equation did not spring into existence from inspiration. It was derived from data
on size, effort, and development time on hundreds of projects. Here it is:

Size = (Effort/B)(1/3) x Time(4/3) x Process Productivity

B is a constant that has the effect of giving greater weight to the effort factor in very
small systems. Still, effort, reduced to the cube root, has less influence than time, raised
to a power greater than 1. This emphasis on time in the equation means that the time
planned for development is extremely important in software development.

That leaves us with Process Productivity named, but still not reduced to a number. We
accomplish that by calibration. With completed projects, there is a record of size, effort,
and time. Therefore--

Process Productivity = Size divided by [(Effort/B)(1/3) x Time(4/3)]

Calibration of projects recently completed by a software organization gives us a number
representing its process productivity. We can use that number, not only to estimate time
and effort for future projects, but also to measure process improvement from year to
year. It is the "little whip" that doesn't bloody us, but keeps us working.

	Familiar Metric Management –�Get Yourself a Little Whip!
	Lawrence H. Putnam
	Ware Myers
	What is work?
	That something is productivity
	We need a better measure of productivity

