
1

Familiar Metric Management -
Know What You Have To Do

Lawrence H. Putnam
Ware Myers

In the December column we recounted that Leonardo da Vinci, aware of the invincibility of
feasibility, recommended that the Canal du Midi across southern France not be attempted. The
water supply to operate the locks was not then in sight. So Leonardo is remembered as a great
painter, not forgotten as a failed canal builder. From his example we drew the lesson that works
of software, like canals, should have a feasibility phase.

A century and a half later Pierre Paul Riquet, tax collector for the King of France for the region
around Toulouse and the possessor, in consequence, of a mental map of the area, had the insight
that the Montagne Noire north of the proposed canal route, not only had abundant rainfall, but
also was at a higher altitude than the high point of the canal. That insight, in effect, concluded the
feasibility phase.

Riquet embarked upon the second phase, functional design. His first step was to enlist the
knowledge of Pierre Campmas, the fontainier of the mountainous area, the official responsible for
water supplies. It would take us too far from modern-day software projects to review Riquet’s
many difficulties in planning and building the canal over the next 20 years. Let us just say that the
initial cost estimate was nine million livres and the final cost was over 15 million livres. Sounds
familiar, doesn’t it?

It is the central business of the second phase of software development to reduce divergences of
this kind to the levels that business practice can tolerate.

Metrics underlie software development

The most important metrics in the field of software development are measures of factors that,
when projected into the future, enable a project organization to complete a software system
within a time and budget at the desired reliability. It follows then that software people have to
work with two elements. The first is the measurements that will quantify the factors. The second
is the reality that the factors describe.

The key measurements. In this series of columns we have been identifying the minimum set of
measurements needed to manage a software project: development time, effort, and size (or
functionality) of the eventual software. From these three metrics of past projects we derive, via
the software equation, the process productivity that will be applicable to the next project. Also,
from these metrics, another equation projects the defect rate.

Now, considering the next project, we have the task of estimating development time, effort, and
defect rate. We already know the process productivity metric from past projects. We need to
establish at this point in the estimating operation the size of the proposed software product. It
might be measured in source lines of code, function points, subsystems, modules, or even objects.
All are, fundamentally, an expression of size. In whatever terms we measure this “size,” we have
to know first what it is that we are going to develop. It is that which we are to “size.”

2

What it is

What we have to produce is described at this stage by the functional design. Some call it the
architecture. We have to carry it far enough to establish two points:

• What is to be done in sufficient detail to make an overall estimate of size.
• How it is to be done with sufficient clarity to identify potential risks.

Size. In this issue of ITMS our emphasis is on “what is to be done.” We treated the sizing process
itself in ITMS, December 1995, as well as in Chapter 4 of our book, Measures for Excellence:
Reliable Software On Time, Within Budget. Sizing should be done by highly experienced people,
but the precision with which they can size depends on the level of maturity of the design. At the
end of the feasibility phase, for example, the feasibility team has carried the design only far
enough to eliminate the critical risks. At this point the estimators can make only a “ballpark”
estimate of time, effort, and reliability. By the end of the functional-design phase, the estimators
have to make a more precise estimate, one with which their organization can live through the
main-build phase.

Risks. In the feasibility phase we identified and avoided in one way or another risks that would
make the project infeasible. Now in the functional-design phase we look for risks significant
enough to make planning the construction phase chancy. By the end of this phase, we want to
have a plan that we can execute within estimates of time, effort, and reliability. To reach this
planning level, we need to work through these risks far enough to know how we are going to do
these parts of the system, how much time and effort this doing will take, and what level of
reliability we can expect.

Working through this level of risk often means that we have to firm up the requirements for that
part of the system, carry out a tentative design, implement it in code, test that code, and show it to
the stakeholders concerned with that area. This design and code is not usually what we will
eventually deliver. Rather, it is a bare-bones code that demonstrates that the functionality in
question works. It lacks user protection, error checking, and other niceties customarily found in
the completed commercial product. This early prototype code may be only 10 to 15 percent of the
final code. It does establish that we can do the risky function and that it will take about so much
time and effort to do so.

Requirements change. It may turn out, however, that we cannot overcome a serious risk, at least
not within a reasonable time-and-effort scope. In such cases, we may, in concert with the client,
water down the requirement that is causing the risk. Furthermore, in the course of exploring the
risks and setting up a functional design, the potential users and the design team almost inevitably
will unearth problems with the proposed system that will lead to requirements changes. In fact,
solidifying the requirements is one of the underlying purposes of the functional-design phase.

Why we neglect functional design

A functional-design phase seems to make sense. How do you know how much time and effort the
main build will take if you don’t figure out, at least approximately, what you have to do? Yet
many big projects seem to slide over this phase. Capers Jones reported that 25 percent of projects
in the lower end of the large-project range (100K to 500K SLOC) are cancelled. At the upper end
of the range (greater than 1,000K SLOC), 65 percent are cancelled. [1] Among the root causes he
identified are:

3

• “Project was poorly planned.”
• “Project could not achieve technical goals, such as critical performance or throughput

targets.”
• “Discovered during testing that it probably would not work well enough to be released.”

“Poorly planned” implies, among other possibilities, that developers had to plan the project
before they had a satisfactory functional design. The latter two root causes suggest that the
developers did not have the opportunity to identify and reduce important risks before they were
pushed into the main build.

Jones’ statistics take on flesh and blood in the experience of Robert Mittelstaedt, member of four
boards of directors, who told Computerworld (Dec. 15, 1997): “I am amazed at the number of
times I am called in to look at a system that has been in development for five years and is millions
of dollars in the hole and still isn’t going to work, and they are getting ready to shut it down.”

Why, then, is neglect of this phase widespread? The answer seems to be threefold.

• Time. This phase takes time up front. In our observation, the minimum time length of the
functional-design phase is about one third of the main-build time. Clients, customers, users,
and even many managers get nervous when all they see are a few guys and gals sitting
around, supposedly thinking. Seeing some code coming out calms their nerves and in the
customary waterfall development process that doesn’t happen until the main build gets under
way. Hence the rush to get to the main build.

• Effort and cost. This phase also takes effort up front. Effort for large projects is about one-
fifth of the main-build effort. Who is going to pick up this cost? The answer varies with the
nature of the application. In the case of a contractor preparing a bid, he stands the cost. It is
his overhead and he wants to minimize it. In the case of an in-house software organization,
the cost may be part of its own overhead structure or it may be financed by the in-house
client. In either case the cost bearer wants to minimize it. In the case of a shrink-wrap
organization, it is part of the ongoing cost of development and the organization may be under
less pressure to minimize it.

• Lack of appreciation. Stakeholders fail to appreciate that getting risks out of the way up front
and getting a firm basis for planning and cost estimation lead to a smoother main build, not to
say few or no project cancellations.

Man of action

What would Pierre Paul Riquet do if he were in software today? We believe he would:

• Appreciate the merits of phased development.
• Modify financial arrangements to support the cost of it. For example, a client might support

functional design with a time-and-materials purchase order.
• Produce some prototype code during functional design, demonstrating that a difficult part of

the architecture can function or that a risk can be overcome. (And, not so incidentally, soothe
participants’ ulcers. Riquet had the long-famed Sun King—Louis XIV—to soothe.)

1. Capers Jones, Assessment and Control of Software Risks, Prentice Hall, 1993.

