
1

Familiar Metric Management -
What Will The Year 2000 Fix Cost Me?

Lawrence H. Putnam
Ware Myers

Estimates by consulting groups of the worldwide cost to fix the Year 2000 problem range from
$300 billion to $1200 billion (not counting the cost of litigation and legal damages that may result
from failure to fix). In contrast, organizations that actually face the problem typically estimate
much less. For example, the US Federal government has budgeted only $2.3 billion over the
next two and a half years. Estimates by consulting groups for the Department of Defense alone
are in the $30 billion range.

In a front page article April 7, the New York Times featured the problems the Mason Shoe
Company, Chippewa Falls, Wisconsin, is facing, summarized in Table 1. Mason Shoe’s
president, John Lub, agreed to this $500,000 Y2K budget reluctantly. “We get absolutely nothing
out of it,” he told the New York Times. “We get to stay in business, that’s all.” Analysts believe
some companies may exit the scene entirely for failure to overcome the Y2K problem.

Table 1. Mason Shoe Company is working on the Y2K problem with a $500,000 budget.

Employees 750
Lines of Code 3 million
Programmers on the Job 2
Consultant, two days per month $1200 per day plus expenses

We need an estimating “fix”

In an effort to get a “fix” on the financial magnitude of the Y2K problem, we ran a simulation for a
typical medium-size company with the following numbers:

200 systems: inventory of existing systems to be modified, excluding systems that are no longer
needed and systems for which replacements are being purchased.

18.4 million SLOC: the size distribution of these systems is typical of that found within QSM’s
database of more than 3000 business systems.

92,000 SLOC: average system size.

6 percent, or 1,104,000 SLOC: estimated number of new and modified lines of code to be
worked on.

$14,583/person-month: fully burdened labor rate.

Process Productivity Capability of fixing organization: average.

We ran these numbers through the algorithms in the SLIM estimating tool 1000 times. The
results of this simulation are summarized in Table 2. We assumed that the team sizes were kept
small, two or three people, typical of the number to be assigned to fix an individual system
among the 200 in the inventory. We included all the Y2K work: planning, design of the process,
finding and fixing the problems, and testing the result.

The employment of simulation methods, that is, running 1000 trials, captures the non-linearities
in the software development process. Practitioners have noted this non-linear tendency over the

2

years. Simulation methods also provide a realistic range of answers because they take the
uncertainties of the input values into account. In the present case, for instance, the number of
lines of code involved, the distribution of sizes, the percentage of lines that will have to be added
or modified, productivity, staffing style, and burdened cost per person-month—all are uncertain.
As a result of these uncertainties, the mean of the values obtained by the 1000-trial simulation is
about 50 percent greater than the one based on a single computation.

Table 2. For a medium-size company the cost of fixing the Y2K problem will be in the tens of millions of dollars.

Statistic Value
Trials 1000
Mean Cost $21,760,537
Median Cost $20,156,881
Standard Deviation $8,228,242
Coefficient of Variability 0.38
Range minimum $7,186,837
Range maximum $65,648,866
Range width $58,462,048
Mean Standard Error $260,200

Table 3 shows the results of the same simulation applied to inventories of different numbers of
systems. The expected cost is the mean value of 1000 trials in the simulation.

Table 3. Readers may get an approximate grasp of the size of their Y2K business-system conversion problem by
relating their organization to the appropriate column in this table.

No. of Systems 50 100 150 200 250
Expected Cost,
$millions

$5.44 $10.88 $16.32 $21.76 $27.20

Cost Range,
$millions

2 - 16 4 - 33 5 - 49 7 - 65 9 - 82

The expected cost/SLOC is $1.09 across the whole spectrum of number of systems and spans a
range from $.36 to $3.19 per line of code.

3

Figure 1 shows the range of an organization’s costs for Year 2000 fixes. Because of uncertainties
in the input values, the cost range is wide.

Cost of Year 2000 Fix v. No. systems

$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

$100

0 50 100 150 200 250 300 350 400

No. Systems

C
o

st
, $

m
ill

io
n

s

Min. Cost

Expected Cost

Max. Cost

Figure 1. The middle line is the expected cost of date correction, based on the simulation. The upper line represents
the maximum value. The cost is very unlikely to be less than that shown by the lower line. The lines can probably be
extrapolated a little with reasonable safety.

To use Table 3, look in the column nearest to the number of systems in your own inventory. The
behavior in the table is linear, so you may interpolate between columns. Of course, your systems
may differ from the ones we took as typical. Your productivity may differ from the average
productivity we used in the computations. Still, the table should give you a rough idea of what to
expect.

More simply, the simulated cost per source line of code is about one dollar. Just multiply the
number of source lines of code in each system or in your entire inventory by one dollar. If you
prefer to work in function points, there are about 100 lines of Cobol per function point. So the
cost to correct a function point worth of Cobol is about $100. Just multiply the number of function
points by $100. These are the ball park estimates of the cost you can look forward to absorbing
in the next two and one half years.

The Mason Shoe Company appears to be doing very much better than the Table 3 values. It has
estimated its cost for three million lines of code at $500,000. According to the table, fixing and
testing 3,000,000 SLOC would cost $3.27 million, more than six times Mason’s estimate.
Perhaps Mason is operating at the efficient end of our figures—36 cents per line of code. That
would still cost $1.08 million, about two times Mason’s estimate. It is possible, of course, that
Mason is super-productive. The more likely explanation is that Mason has underestimated its
costs—a flaw that seems to be endemic to the field.

4

What would be the cost to the Department of Defense under our formula? The New York Times
quotes Emmett Paige, Jr., the Pentagon’s top computer executive, as saying DoD has 9300
computer systems running 112,000 programs, not counting those at the National Security
Agency, Central Intelligence Agency, and in super-secret programs. If DoD’s programs average
92,000 SLOC each (a big IF), it has about 10 billion SLOC. If the cost of fixing its code is about
one dollar a line (another big IF), there goes $10 billion. Paige said the current estimate of
conversion costs is $1.1 billion, but he expects it to rise.

Getting ready for the fix

The main thrust of this article is on estimating, costing, and scheduling the Y2K conversion
effort. The availability and value of tools for finding and fixing Y2K instances and testing the
revised code is outside its scope. First you have to get ready.

Inventory your software. In many companies software has grown like a weed on Vigoro. They
have no organized record of what they have. The first step is to inventory the existing software
and to assign it to categories:

1) The program is no longer in use. Most companies have had no organized procedure for
formally retiring programs no longer needed. Now is the time to kill these programs, not to
spend money making them Y2K compliant.

2) The program is no longer in routine use, but it might, for instance, be used sometime to read
old 1988 files recorded in a now outmoded record format in the event some one sues the
company! Mark these programs to be used only with old files. They need not be converted.

3) The program can be readily replaced with a new, purchased Y2K-compliant shrinkwrap
product. Do so and kill the old program. Note, however, that it is now too late, in most cases,
to replace all the legacy applications. Doing that is a big job.

4) Some of the existing inventory may already be Y2K compliant. Your people may have been
developing compliant programs the last several years. Recently purchased programs may be
compliant.

5) That leaves, unfortunately, a large residue of programs that are still in use and are not
compliant.

Select pilot conversions. As you have noticed in our introductory analysis, using typical inputs
results in a very broad range of output values. You can substantially narrow this range by
measuring several pilot projects. Select system that are typical of your software inventory. The
metrics you need are:

1) Number of SLOC in the entire pilot system;
2) Number of SLOC modified or added new in the course of converting the pilot system; the

ratio of these two numbers gives you the percentage that will be new or modified;
3) Time spent in making the conversion, or schedule time;
4) Effort (person-months) devoted to the project.

These are the numbers—size, schedule, effort—from which we compute process productivity, as
we have recounted in earlier columns* . This value will now be firm, based upon your own
experience in this kind of work. Also the magnitude of the work to be done, based on your own
value of the percentage of new and modified code, is now much firmer.

* Those who missed earlier columns in this newsletter may refer to our book, Measures for
Excellence: Reliable Software On Time, Within Budget, Yourdon Press, Prentice Hall, 1992, 378
pp. The SLIM estimating tool computerizes these computations, but Chapters 14 and 15 explain
how to do them by hand.

5

Estimate remaining conversions. Given the percentage of lines to be corrected and the process
productivity with which your teams do the work, it is now a matter of mere computation to
compute effort and schedule for each remaining system. Your new estimate will fall within a
much narrower range, because you now have more precise inputs. Moreover, your new estimate
will now be much closer to what you will actually experience, because it is based on your own
pilot experience, not on the industry-wide averages on which we based our introductory
computations.

A not so typical example is shown in Figure 2. It is not typical because the company’s process
productivity index, based on actual performance on previous projects, is 22.2. This number is
better than one standard deviation above the mean of organizations doing business systems.
Also the example is not typical because the percentage of code to be modified or added is
somewhat lower -- 4.2 percent. The manpower buildup index employed in the calculation is 6.8,
representing a very rapid buildup of staff and a large team for this size project.

Staffing Profile

0

5

10

15

20

25

30
1 4 7

S
taff

1 2 3 4 5 6 7 *
Oct
'96

Nov Dec Jan
'97

Feb Mar Apr May

Life Cycle

1 = AC

4 = STest

7 = ETest

RISK
Time
Effort
Uinf Cst
Min Pk Staff
Max Pk Staff
ETest MTTD
% 0 10 20 30 40 50 60 70 80 90 100

Time
Effort
Uinf Cst
Pk Staff
MTTD
Start

Months
PM
$ 1000
People
Hours
Date

R&T
3.42

43.96
550

18.00
12.31

11/22/96

Life Cycle
4.10

59.07
738

18.00
12.31

11/1/96

Size
50640

ESLOC

MBI 6.8
PI 22.2

Reconstruction of a Year 2000 Project

staff starts at 6
and builds to 18

Project is
completed in
4 calendar
months

Figure 2. Given a productivity index of 22.2, manpower buildup index of 6.8, and project size of 50,640 lines of code,
the staffing profile starts at six people and builds up to a peak of nearly 20 over a period of 4.1 months.

The schedule time for this project is among the best in our database, as shown on Figure 3. The
cost is about average, but the productivity index is at the high end of an approximately normal
distribution.

6

Life Cycle Time

0.1

1

10

100

M
onths

0.1 1 10 100
ESLOC (thousands)

PI Profile

0

2

4

6

8

10

12

S
ystem

s

0 5 10 15 20 25 30 35 40
Productivity Index

Life Cycle Effort

0.1

1

10

100

1000
P

M

0.1 1 10 100
ESLOC (thousands)

Current Solution Y2K History QSM Business Database Avg 1 SD
Life Cycle includes Analy, R&T

Time
Effort
Uinf Cst
Pk Staff
MTTD
Size

Life Cycle

4.10
59.07

738
18.00

n/a
50640

Months
PM
$ 1000
People

ESLOC

 Slope
 Locked

 MBI 6.8
 PI 22.2

Year 2000 Project Compared
 to small maintenance projects

Great Schedule
Performance

Great Productivity Index

Typical cost

Figure 3. Schedule performance is “great” at this company’s high productivity level. Because it built up staff rapidly to
accomplish the project sooner, the effort (and hence cost) is “not great.” It is an example of the effort-time tradeoff.

Effect of time compression

Of course, everybody is hollering “Wolf” now, even the New York Times. It is true that the period
to December 31, 1999 is now extremely compressed. Some organizations have been pushing
their systems into Y2K compliance since the 1980s. As we have pointed out in previous columns,
there is such a thing as the “minimum development time.” It is the least time in which a project of
a given size has ever been completed at a given process-productivity value. Moreover, in the
short run (and the two and a half years to 2000 is a short run) there is little you can do to shorten
this minimum development time. Improving process productivity reduces the minimum
development time, but that, itself, takes time measured in years.

ADVICE: Get started right away.

You may find out, when you have completed your pilot projects and made your estimates, that
the time remaining is, unfortunately, less than the minimum development time, no matter how
many people you put on the conversion work. Moreover, the number of people qualified for this
work is limited. Recruiters are feeling the shortage. Salaries are rising.

Triage. As all good television addicts know by now, triage is the process of sorting the severely
wounded or ill into three groups, enabling a limited number of doctors to work on the most
severe cases that can still be helped. Similarly, in software development it is the process of
reducing the amount of work to be done in the schedule time available to what can be done. In
the Y2K case, divide your remaining systems into groups:

7

• Work first on those that involve life and death if the dates are faulty. In your own case, work
first on those that are critical to the continued operation of your organization;

• Work next on those that are significant;
• Put in the third category those where faulty dates are merely irritating, not costly. You can

work on them after January 1, 2000.

The next millennium. Organizations that get a late start on Y2K conversion can confidently
expect to enter the next century with some number of systems not yet fixed. Even those who
have “fixed” all their systems can expect some percentage of errors to turn up when the systems
actually operate after midnight December 31. For one thing, there is the error injection rate, well
known to software maintenance people. It appears to be in the range of 7 to 12 percent. Y2K
corrections will probably have an error injection rate in this vicinity. For another thing, software
people have been delivering systems right along with only 85 to 95 percent of the defects
removed.

The point is: there has been a considerable percentage of defects in operating software systems
all along. The world has managed to survive. Early in the 2000s that percentage will be a little
higher than it has been—or possibly quite a bit higher. Will the world survive? Or, perhaps more
to the point, will your company survive? Hang around and see!

