
Familiar Metric Management -
Time-to-Market
Lawrence H. Putnam

Ware Myers

 “The only way to increase product quality and reduce cost while concurrently
improving product development speed is to fundamentally change the development
process itself.”

Christopher Meyer [1]

 “I’m going to spring four words on you,” Phil said, walking into John’s office. Phil
was a software manager and John, one of his developers. “Faster time-to-market.”

John cringed in an exaggerated fashion, almost falling out of his swivel chair.
Recovering his balance, he said, “And I’ll spit five words on you: Faster time-to-the-
graveyard.”

“Pretty good,” Phil said, “Your neuron network seems to be clicking. Put it to work on
this problem: Competitors are getting to market ahead of us.”

“They can’t keep it up,” John replied. “Their people will burn out.”

Unbeknownst to John some of them have been keeping it up.

Unbeknownst to Phil some of them seem to know how to do it.

We know one part of the answer: metrics. Our favorite four:

size, schedule, effort, and process productivity, with an assist from the fifth,
reliability.

In Figure 1 we bring our favorite four metrics together in one picture: Size-divided-
by-Process-Productivity on a field of logarithm of effort versus logarithm of schedule.
This figure is a pictorial representation of the software equation:

(Project Size)/(Process Productivity) = (Effort/Special Skills Factor)(1/3) (Development Time)(4/3)

Familiar Metrics Management—Time-To-Market

2

Log Development Time

Log Development Effort

Minimum Time

Maximum Time

30% greater than Minimum Time

Size/Productivity Line

Impossible
Region

Figure 1. We can shift the Size/Process-Productivity line to the left and downward, thus getting to market
faster, only by reducing project size or increasing the productivity of the process.

On a log-log field, the locations of time, effort points corresponding to the
Size/Productivity values fall on a straight line, (because of the exponential values in
the software equation, which is a power function). On this line the upper dot
represents the minimum development time; the area to the left of this dot is the
Impossible Region, that is, no comparable project has ever been completed, according
to our 4000-project database, at the values of schedule and effort found in this
region.

We located the small square at about 130 percent of the minimum development time;
generally developers find it impractical to extend development much beyond this
point even though it is sometimes possible.

The values of effort and schedule between these two points fall in the project
operating region, that is, the time and effort scale on which management can plan to
execute the project. On the one hand, managers could seek to reduce development
time by planning to operate the project closer to the upper dot. On the other hand,
pushing the schedule time in this way leads to much higher costs.

If we take the size of the project and its process productivity to be fixed, at least in
the short run, then we can get to market faster only at the expense of a considerably
greater expenditure of effort, that is, cost. Moreover, the pressure of expending effort
at a rapid rate results in more defects and lower reliability. The difference between

Familiar Metrics Management—Time-To-Market

3

schedule to the four/thirds power and effort to the one-third power means that
shortening the schedule in this way is expensive, in fact, expensive by a factor of
four.

Fortunately, we can turn to the two other factors in the software equation: size and
process productivity. If we reduce the size of the project, the Size/Productivity line
moves to the left and downward. The operating region now lies in an area of reduced
schedule and reduced effort.

Similarly, if we increase process productivity, the line also moves to the left and
downward, resulting in the same effect. In either case, we could get to market faster
without increasing cost.

So, we have shown, mathematically, that we can achieve our objective of faster Time-
To-Market in this way. Of course, two problems remain. How do we reduce size
without sacrificing functionality? How do we increase process productivity? If
solving these problems were easy, everyone would have done so long since. At least
we know what we have to do.

Reduce size
That bald statement, “Reduce size,” is one way, but it lacks sophistication. At the
beginning of an entirely new project, users often do not know in detail what they
want. They need to find out, through working with something, what they need.

This process is called iterative development. The developers give them a rapid
prototype; they try it out in practice; they report back what is good about it and what
more they need. They report fairly soon—in weeks or months, instead of years later
when a complete product might be ready. Iterative development speeds up the
getting of valid requirements.

One way to get a prototype fast is to gin it up largely from existing software
components. The prototype developers need write only a small amount of connecting
code and that doesn’t take long.

In fact, the developers can later, when they and users have solidified requirements,
put the final product itself together from reusable components. In effect, this
technique greatly reduces size. That is, the size of the product, measured in lines of
source code, may still be large, but the number of lines of code that actually have to
be developed from scratch is small. Consequently, the development time and effort
required are small.

We estimate that, already, experienced developers take up to 25 percent of a design
out of their back pockets. Organizations with some pretense of organized reuse are
getting up to 50 percent. With still better organized reuse components, a few
organizations are reaching 75 percent. The theoretical limit appears to be more than
90 percent. In effect, the amount of a project that has to be designed and coded from
scratch can be reduced by factors of two, four, or even 10. If you can establish

Familiar Metrics Management—Time-To-Market

4

effective reuse in your organization, you can move the Size/Productivity line quite a
bit to the left and downward.

That’s a big “if,” of course, but a few of our clients are doing it. Their metrics prove
it.

Increase process productivity
The process-productivity term in the software equation embraces more facets of
productivity than lines of code per personmonth, the conventional form of
productivity. Because of the way it is derived from size, development time, and effort,
it represents all the elements that contribute to the effectiveness of a software project
organization. These elements include the ability and experience of the people; the
ability of the managerial hierarchy to plan the work, organize the people, and
support their morale; and the methods, tools, and computer equipment in use.

One important factor is the ability of the organization to learn, to move from an
outdated paradigm to a new one that provides better performance. The “learning
organization” has appeared as a concept, but is scarce in practice.

Moving from paradigm to paradigm, for example, from structured design to object-
oriented design, or from design-from-scratch to reusable components, is difficult. The
process-productivity metric, by itself, does not effect improvement, but it does
measure improvement. That is half the battle. It tells you whether what you are
attempting is actually working.

Reliability
Oh yes, our last metric: defects per month, or mean time to defect. Our database
shows that reliability improves as process productivity increases. Moreover,
reliability (and quality) improve as reuse increases. For people to reuse components
voluntarily, they have to be good components. They have to work; they have to be
reliable.

The secret of faster Time-To-Market boils down to iterative development, reuse of
really good components, and improved process, plus measurement of the result.
These are hardly “silver bullets” because they all take a lot of work. But they do
work! All for now.

 “What do you say to that, John?” Phil asked.

“Let’s get started.”

1. Christopher Meyer, [italics] Fast Cycle Time: How to Align Purpose, Strategy,

and Structure for Speed, [end italics] The Free Press, New York, 1993, 290 pp.

