
Familiar Metric Management +
Lawrence H. Putnam

Ware Myers

 “The current model leads us to the conclusion that the limiting factor is the rate at
which ideas or insights can be generated, and that the rate is not widely affected, if at
all, by the number of men on the job, but rather by some capability level of the group.”
Peter V. Norden [1]

Conventional productivity—source lines of code per personmonth—is familiar, but it
falters in practice. It is little help to a manager trying to carry out his six basic
functions: (1) estimating, (2) setting dates, (3) supplying resources, (4) monitoring
work progress, (5) assuring product quality, (6) measuring process improvement, as
we set forth in the last column. The software industry needs something more, call it
FMM + .

The productivity relationship
The answer appears obvious in retrospect, though it was not so clear at the time,
back in the 1970s. Software development managers needed a productivity
relationship that incorporates not only the amount of work done and the effort
devoted to doing it, but also the very important time factor. Probably the pyramid
builders had first noticed its importance many thousands of years ago.

One day we discovered that Peter V. Norden of the IBM Development Laboratory,
Poughkeepsie, NY, had preceded us in this quest. In the 1950s he had found a
relationship between the assignment of people to a research and development project
and the development time of the work being done. Further, this relationship could
be modeled by a curve (Figure 1), named after Lord Rayleigh, the great British
physicist. This curve had an equation, so we could manipulate the time and effort
relationships by algebraic methods.

2

Staff,
No. of People

Dev. Time

Elapsed Time

Personmonths of Effort

Figure 1. The assignment of staff to a development project builds up initially, reaches a
peak, falls off, then tails off during a long clean-up period. The area under the curve is
proportional to the number of personmonths expended.

Putnam determined that this pattern also described software development. Given
this staff profile, it was just a matter of mathematics to develop the software
equation presented in Table 1.

Table 1. The software equation shows that the relationship between the amount of work
done (as measured by project size) and the effort (personyears) and development time
(years) is moderated by a fourth element that we labeled “process” productivity. It is a
measure of the productivity of the entire project organization at the level of “process”
proficiency at which the organization carried out the project.

Project Size = (Process Productivity) (Effort/Special Skills Factor) 1/3 (Development Time) 4/3

The same equation, rearranged for process productivity:

Process Productivity = (Project Size) / (Effort/Special Skills Factor) 1/3 (Development Time) 4/3

Since the effort, development time, and size numbers apply to an entire project, the
corresponding productivity rate is not that of an individual programmer, but that of
the entire project organization. At first we called it the “technology constant,” for its

3

likeness to the “constant” found in algebra. Then we called it “organizational
productivity,” because it applied to the whole organization. Eventually, with the
increasing popularity of the term, process, we called it “process productivity.” By
rearranging the terms in the equation, also shown in Table 1, the factors that
determine process productivity stand out.

The relationships are nonlinear
In conventional production, output is equal to a productivity term times the amount
of effort applied. That is usually a linear equation. Note that the software equation is
nonlinear. On the one hand, the effort term is present to the one third power. In
other words, we have to take the cube root of the effort, greatly reducing the
importance of effort in software relationships. Norden anticipated this finding long
ago in the insight quoted above: “The rate is not widely affected, if at all, by the
number of men on the job.”

On the other hand, development time, raised to the 1.33 power, carries great weight.
Fred Brooks put it in what he called “outrageously oversimplified” terms in The
Mythical Man-Month in 1975: “Adding manpower to a late software project makes it
later.” As recently as last spring in a keynote address to the International
Conference on Software Engineering, he added, “On balance, I stand by the bald
statement as the best zeroth-order approximation to the truth, a rule of thumb to
warn managers against blindly making the instinctive fix to a late project.”

The software equation reduces insights such as these to a mathematical expression
that can be used by managers to carry out their six basic functions. It does four
things that conventional productivity does not.

(1) It represents the productivity of an entire organization on a project, not that of an
individual programmer. The productivity of a project organization at its current
level of process proficiency is what you want when you deal with the six basic
control functions. The productivity of individual developers as a factor in their
merit ratings is a can of worms that is best kept separate from project-control
matters.

(2) It represents the productivity of the process during the time period the
measurements cover. This period is usually recently completed projects for use in
estimating the next round. It can be historical projects for the purpose of gauging
the rate of process improvement. It can even be projects currently in work;
usually they must be at least 25 percent completed in order for the data to be
reasonably valid.

(3) Because the software equation includes a development-time term, it takes into
consideration the effect of the development time planned or allowed.

(4) Similarly, because it includes a size term, it allows for the effect of size. In
general, large projects are more complex than comparable small projects and,
other things being equal, process productivity is lower. However, other things are
often not equal. To accomplish a large project at all, an organization has to be
pretty good.

4

Finally, with process productivity, you can make better estimates. With better
estimates, you can better monitor progress against what the estimate indicates you
should expect. With a good indicator of process productivity on current projects, you
can see if they are doing better than last year’s projects. You have a measure of
improvement justifying the funds you invested in better equipment, tools, and staff
training. Moreover, you can turn that measure of improvement into a return-on-
investment figure that enables you to justify continued investment in process
improvement.

There is much more to be said on these matters of project and investment control—
and we will say it in future columns. First, however, we have carried on too long
without getting to that very important attribute, software quality and reliability. It,
too, can be measured, controlled, and improved. We turn to it in our next column. All
for now.

5

References

1. Peter V. Norden, “Useful Tools for Project Management,” in Operations Research
in Research and Development, edited by B. V. Dean, John Wiley & Sons, 1963.

