
Adapting software project estimation to the reality of changing
development technologies 1

Adapting software project
estimation to the reality of
changing development
technologies

Introduction

Estimating software projects where significant amounts of new
technology are being used is a difficult and very risky
undertaking. In this article we will discuss how to use a macro-
estimation technique (SLIM estimation method) to create
reasonable estimates that adequately reflect risks and
uncertainties.

Change, Change and More Change

Lets face it, we live in world of change. Product development
cycles are getting shorter. New tools and development methods
are being adopted almost as fast. In the midst of all this change,
development managers, product planners and purchasers need
to be able to estimate cost, schedules, resources and product
quality with investment quality precision.

This is a difficult task but certainly not impossible. When
confronted with this job people often feel overwhelmed and find
it difficult to step back to objectively evaluate what is really
going to be different in the new development paradigm.

Getting Down to Basics

To estimate new technology projects from a macro-estimation
perspective there are 2 key variables that we need to get a
handle on. The variables are size and efficiency. Lets
examine these variables more closely.

Software Size: The first important variable is software size.
With the size variable we are simply trying to get a feel for how
much product we are going to have to develop.

Adapting software project estimation to the reality of changing
development technologies 2

In the construction industry size is typically measured in square
footage of the structure. The square footage gives builders a
rough feel for the degree of engineering rigor and discipline
required for the job as well as quantity of materials. There is a
big difference between building a single family house and a forty
story office building. Similarly in software there is a big
difference between building a 25,000 SLOC (source line of code)
graphics package and a 1,500,000 SLOC CAD/CAM system.

In software there are a number of different ways that the size
can be measured. Traditional size measures have been source
lines of code and function points. With the introduction of object
oriented methods and visual development tools new measures of
size might be more convenient to use. The case study presented
in this paper will highlight some practical procedures for sizing
in these new environments.

Development Efficiency: There are a significant number of
factors that affect efficiency of a software development
environment. The broad categories are:

• People (skill, motivation, team dynamics, functional
knowledge, management, leadership, etc.)

• Tools (operating systems, compilers, planning systems,
configuration management tools, data management tools,
documentation tools, test tools, etc.)

• Technical complexity (application domain, quantity of new
algorithms and logic, processing constraints, memory
constraints, platform stability, number of development sites
involved, etc.)

• Complexity of code reuse (Complexity of integrating and
testing old code with new code, research time required to
determine usefulness, experience using the existing
software, usefulness of system documentation and customer
support, etc.)

We recognize that as we move into new environments that
project factors will be significantly different. However, there
will be some cultural behavior that will remain essentially the
same.

People often feel like their historic data are “no good” anymore,
but I always like to look at data from past projects. There are at
least two good reasons for looking at past history.

Adapting software project estimation to the reality of changing
development technologies 3

First of all, recent historic data provides a profile of where an
organization has been. One can determine the average
productivity along with the statistical variation. By looking at
the outliers one can determine the productivity impact of unique
project factors. The history provides a starting point for us to
judge the impact of the new technologies.

Secondly, I find that organizations are always going through
periods of significant change. If it is possible to identify
technology transition points in the past, then one can learn how
this particular organization has been able to assimilate
technology. This information can be then be applied to the new
situation. Is this approach perfect? - Absolutely not. Is it
useful? Without a doubt. Remember, the goal is to reduce risk
and eliminate being wrong by a factor of 10. Any meaningful
information that we can bring to bear on this situation helps
enormously.

Case Study: On a recent consulting engagement we were asked
to help a client estimate a billing application. The developer
was using the Smalltalk object-oriented (OO) environment.
This environment was totally new for them. Our client was
being asked by their customer to produce a most likely and a
worse case estimate.

Our assignment was to:

1. Estimate the size of the application.

2. Determine a reasonable efficiency level given the
complexities of the new environment and our understanding
of the technical challenges.

3. Build a baseline estimate and work plans.

4. Build a worse case estimate.

Size Estimate: The first challenge was to estimate the size of
the system. My experience has shown that sizing information is
either contained in design documents or inside the mind of a
technical guru. My technique to get at the sizing information
is simple: ask questions and be a good listener. I typically ask
for a technical briefing on the system to help facilitate my
information gathering. During the briefing I typically ask
questions that help me understand what they have to build and
easy ways for them to quantify the functionality they must
create. Some typical high level probing questions are listed
below.

Adapting software project estimation to the reality of changing
development technologies 4

• How many pieces (subsystems - modules) are there likely to
be in the system?

• Which pieces will have to be newly developed, modified,
reused internally with no change, or purchased?

• What languages are going to be used? How much experience
do they have with this language and operating system
environment(s)?

• What are the primary construction units that the software
engineers will be building (objects, screens, modules, reports
application views, etc.)?

• Has any proto-type construction been done using the new
development paradigm. If yes, do they have any basic
statistics related to size, time and effort?

As we discussed the architecture of the billing application we
identified the following subsystems.

User Interface
Business Model
Access Relational Mapper
Access Transaction Manager
Data Management Oracle
Data Management Versant
Invoice - Reports
Use Cases
Use Case Framework
Other Classes

Table 1. Subsystems to be built.

After some discussion it became clear that some development
work had already begun. We collected the following statistics on
the completed software.

1. The number of Classes (objects)

2. The number of Methods

3. The number of Smalltalk source lines of code

Adapting software project estimation to the reality of changing
development technologies 5

 Table 2 shows a summary of the statistics. In total 17,313
Smalltalk source lines of code had been written. The average
Smalltalk SLOC per class was 100.66. The SLOC per class for
individual sub-systems ranged from 58 to 188.

Sub-system SLOC Classes Avg SLOC/Class

Business Model 4312 74 58.27
User Interface 3200 17 188.24
Use Case Framework 1893 13 145.62
Use Cases 6585 54 121.94
Other Classes 1323 14 94.50

Total 17313 172
Average SLOC/CLASS 100.66

Small Talk Class Library 107556 911 118.06

Table 2 Sizing Statistics on completed work.

 The average size of Smalltalk classes were significantly smaller
than what I had seen for object oriented C++ applications. The
C++ applications have averaged around 250 SLOC per class. So
I was looking for some information to verify that the average
class size of 100.66 SLOC was reasonable.

We turned to the Smalltalk class library. These are reusable
classes that are provided as part of the Smalltalk development
environment. There was a total of 107,566 Smalltalk SLOC and
911 classes. The average size of a class is 118.06. We felt
comfortable with our statistics but were a little concerned that
the average size might grow 5% to 10% as objects mature
through the development process.

To estimate the size for the rest of the system we needed to
estimate the total number of objects for each of the major
subsystems.

The data management and reporting subsystems were going to
be built using visual programming tools. Somehow we needed to
find a reasonable way to size tables and reports. We decided to
use visual programming primitives as our size measure.

The approach for determining a primitive is:

1. Identify the product construction elements (what are we
constructing? In this case it was Tables and Reports.

2. Identify the specific programming units for each
construction element. (the smallest units of work required to
build the construction element - placing fields on reports
and setting properties etc.)

Adapting software project estimation to the reality of changing
development technologies 6

3. Determine the typical number of programming units for a
simple, average and complex construction element.

4. Build an algorithm to transform construction elements into
primitives.

5. Estimate the number of primitives to implement the
functionality.

Performing this process for tables was quite simple. Tables are
comprised of columns. For this system we figured a simple
tables required 2 columns, an average table requires 5 columns
and a complex table would require up to 10 columns. The
algorithm for determining table primitives is:

Programming Units Simple Average Complex

Columns 2 5 10

Table Primitives = (# of Simple tables * 2) + (# of Average Tables * 5)+(# of Complex Tables * 10)

Table Primitive Complexity Matrix and Estimation Algorithm

Table 3. Table primitive table

Determining the report primitives was more involved. Report
creation requires the programmer to identify specific tables and
fields within the tables that will be used in the report. To build
the report the developer must place fields on the report and set
specific properties for each data field. Some reports may have
multiple sections and some unique “behind the scene” source
code. Table 4 shows our mapping for simple average and
complex reports.

Adapting software project estimation to the reality of changing
development technologies 7

Report Primitive Definition (number of tables * fields) + (number of fields * properties) + number of sections + lines of code

Report Primitive Complexity Matrix and Estimation Algorithm

Programming Units Simple Average Complex

Tables 1 5 10
Fields 6 10 25
Properties 6 6 6
Sections 3 5 8
Unique code 0 0 100

Report Primitives 45 115 508

Report Prim1tive = (# of Simple reports * 45) + (# of Average Reports * 115)+(# of Complex Reports * 508)

Table 4. Report primitive table.

Table 5 is the best estimate of the size at completion. The table
shows a low, most likely and a high estimate for the number of
objects, tables and reports in each of the subsystems. The
column ESLOC/component are the transforms that convert our
estimates into Smalltalk source code. The expected size of the
system is 26, 899 SLOC but it could range from 24,000 to 30,000
when uncertainty is taken into account.

Overall Size Estimate

Table 5. Overall size estimate

Adapting software project estimation to the reality of changing
development technologies 8

Productivity Assumptions: In an ideal case one would like to
have some basic historic data on size, time and effort from some
completed projects. However, in this case, my client was a
startup company and this was their first set of products. There
was no historic data!

The SLIM estimation method requires an input for productivity
in the form of an index which is called a productivity index (PI).
The scale ranges from 1 to 40. Higher values denote a more
efficient environment and / or a simpler application domain.

Our approach for determining the productivity index was to
assess 5 general categories at a fairly high level of abstraction.
The assessment categories were: Application domain, tools and
methods capability, technical complexity, personnel capability,
and code reuse complexity.

The application code was 60% business information system, 30%
layered software and 10% scientific. The application
complexity category resulted in a starting Productivity Index of
15.

Tools and methods were assessed on a scale of 1 to 10 where 1
means tools are primitive or non-existent and methods are
immature or non-existent. This category was assessed at a
conservative 2, based on unfamiliarity with the tools and the
absence of formal methods. This rating reduced the productivity
index by 1.7 .

Technical complexity was assessed on a scale of 1 to 10 were 1 is
simple and 10 is extremely challenging technically. This
category was assessed at an conservative 8, based on the
newness of the product line, client server complexities,
completely new design and new logic. This rating reduced the
productivity index by 1.7.

Personnel was assess on a scale of 1 to 10 were 1 is
inexperienced, unskilled people with no functional knowledge of
the application domain and 10 is the other end of the spectrum.
This category was conservatively assessed as a 6. It probably
could have been assessed as an 8 or 9 but it is the first time this
team has worked together so we down graded the assessment to
a 6. This rating increased the productivity index by .7.

Adapting software project estimation to the reality of changing
development technologies 9

Complexity of reusing code was assessed by answering a series
of questions related to how much of the total system will be
commercial packages and unmodified software, experience using
the unmodified code in building systems, number and
complexity of interfaces to the unmodified software, testing rigor
required and usefulness of documentation and customer
support. For this application there were two sources of reused
code. The first was the class library that was supplied as part of
the Smalltalk environment. The second was a product that they
planned to procure to do data transformation. Based on our
assessment of the reuse factors the productivity index was
decreased by .9.

The aggregate of these adjustments produced an overall
productivity assessment of 11.5. This assessment is 3.5 values
lower than our starting point of 15. The assessment summary is
shown in Figure 1 below.

Determining a Productivity Index

Estimated Productivity

Productivity Impact due to Reuse

Productivity Impact due to
development environment factors

Productivity starting value based on
size of application and application
complexity mix.

Figure 1. Productivity Assessment Selections

A productivity index which is 3.5 below the starting point is
conservative. However, the developer wanted a workable plan
that was completely realistic. They felt that it was better to set
realistic expectations that were achievable so they could deliver
on their commitments.

Adapting software project estimation to the reality of changing
development technologies 10

Base Estimate: The developer needed to keep the staffing
under 8 people at peak loading. The current staffing was at 6
people. The customers goals were to have a system in place by
September 15, 1996 . The product needed to be able to get
through a 8 hour billing cycle without encountering any critical,
serious or moderate defects.

 Based on a size of 26,899 Smalltalk and a productivity index of
11.5 and subject to the staffing, schedule and reliability goals we
produced our initial estimate. It is shown in Figure 2 in the
form of a project staffing profile. This estimate could satisfy all
of the criteria except the schedule. The schedule was about 2
weeks over the desired date of September 15, 1996. The effort
estimate is 11,146 person hours and the reliability estimate is 2
days average time to discover a defect at the delivery date.

Staffing Profile

0

2

4

6

8

10

12
2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 *
Oct
'95

Nov Dec Jan
'96

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
'97

Feb Mar

MB

2 = CDR

3 = FCC

4 = SIT

5 = UOST

6 = IOC

7 = FOC

RISK
Time
Effort
Uinf Cst
Min Pk Staff
Max Pk Staff
FOC MTTD
% 0 10 20 30 40 50 60 70 80 90 100

Time
Effort
Uinf Cst
Pk Staff
MTTD
Start

Months
PHR
$ 1000
People
Days
Date

MB
11.97
11146

697
7.86
2.01

10/1/95

Life Cycle
11.97
11146

697
7.82
2.01

10/1/95

Size
26899

ESLOC

MBI 2.5
PI 11.5

Figure 2. Base estimate of the project with the peak
staffing constraint of 8 people.

We performed a probability analysis on the schedule. The
probability analysis used simulated variations from our size
estimates and productivity assumptions. The probability
analysis showed that there was only about a 35% probability of
meeting the September 15 date. If we could negotiate a two
month extension to November 15 then the probability would
increase to 90%. The schedule probability analysis is shown in
Figure 3.

Adapting software project estimation to the reality of changing
development technologies 11

 Risk Schedule Profile

6/30/96

7/31/96

8/31/96

9/30/96

10/31/96

11/30/96

12/31/96

0 10 20 30 40 50 60 70 80 90 100
Assurance Level (%)

Estimated Delivery Date End of Sept.
50% Probability of Success

Desired Delivery Date Mid Sept.
35% Probability of Success

90% Probability of Success
November 15th 1996

Figure 3 Schedule probability analysis for our most
likely estimate.

Assess work to date against plan to verify estimation
assumptions: Estimation is often performed as a one time
exercise but, there are good reasons to re-estimate throughout
the development. First, re-estimation allows one to make
adaptive forecast when the nature of the project changes
(growth in requirement etc.), and second, it allows one to
confirm the assumptions the estimate is based.

This practice of confirming assumptions is especially important
in estimates of new technology projects because, you have the
most uncertainty about your size and productivity
assumptions. You want to quickly identify poor assumptions
and make practical adjustments early in the projects when you
have the most leverage to implement positive changes or re-
negotiate with your customers.

In this instance, we wanted to confirm that the project team was
performing at or better than the productivity index of 11.5. To
confirm our assumptions we used the project plans for staffing,
schedule, effort and integrated code.

It is important to establish some control bounds around the
baseline project plan. We use 3 control bound regions. The
Green region is normal acceptable variation, amber is
marginally acceptable performance (to be watched carefully) and
the red zone is unacceptable performance requiring action.

Adapting software project estimation to the reality of changing
development technologies 12

If our estimation assumptions were realistic then our actual
performance should be in the green or yellow zone on the
favorable side of production curves. Figure 4 shows the actual
data compared the project estimate. The key points are that
code is being built and integrated at a faster rate than the plan
based on a PI of 11.5 (code production is approximately 4000
SLOC higher than the plan - approximately 30% better) . The
staffing and effort are higher than planned (Cumulative effort
overrun to date is 486 person hours approximately 22 % higher
than planned). The actual performance made us feel
comfortable with our estimation assumptions.

Size

0

5

10

15

20

25

30

35

E
S

LO
C

 (thousands)

Oct
'95

Jan
'96

Apr Jul

Aggregate Staffing Rate

0

2

4

6

8

10

12

P
eople

Oct
'95

Jan
'96

Apr Jul

Gantt Chart

MB

Oct
'95

Jan
'96

Apr Jul

Total Cum Effort

0.0

2.5

5.0

7.5

10.0

12.5

15.0

P
H

R
 (thousands)

Oct
'95

Jan
'96

Apr Jul

Current Plan Actual Interpolated Green Control Bound Yellow Control Bound Life Cycle includes MB

Code Production is
exceeding plan

Staffing and effort
are modestly above plan
but within control limits

Figure 4. Actual performance vs. estimate based on a
size of 26,899 SLOC and a PI of 11.5. The actual

performance so far indicates that this project is doing
fine. It is probably achieving a productivity index better

than 11.5

Worse case scenarios: For the worst case scenario we
assumed that the purchased software had to be built from
scratch and the project staffing would not increase above the
current staff of 6.

Our best estimate showed the size would increase by about 25
objects (2,823 Smalltalk SLOC). The new expected size would be
29,722 SLOC. The worse case estimate is shown in Figure 5. It
extends the schedule by about 7 weeks to the mid November
time frame.

Adapting software project estimation to the reality of changing
development technologies 13

Staffing Profile

0

2

4

6

8

10
2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 *
Oct
'95

Nov Dec Jan
'96

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
'97

Feb Mar Apr May Jun

MB

2 = CDR

3 = FCC

4 = SIT

5 = UOST

6 = IOC

7 = FOC

RISK
Time
Effort
Uinf Cst
Min Pk Staff
Max Pk Staff
FOC MTTD
% 0 10 20 30 40 50 60 70 80 90 100

Time
Effort
Uinf Cst
Pk Staff
MTTD
Start

Months
PHR
$ 1000
People
Days
Date

MB
13.64
9698

606
6.00
2.77

10/1/95

Life Cycle
13.64
9698

606
5.98
2.77

10/1/95

Size
29722

ESLOC

MBI 1.6
PI 11.5

Figure 5. Worse case scenario. Assumes purchase
software will have to be built and peak staffing will not

exceed 6 people.

The schedule probability analysis show that there is only a 7%
chance that the project would be completed by the September 15
date. There is a 90% probability that the schedule will not
extend beyond January 10, 1997.

 Risk Schedule Profile

7/31/96

8/31/96

9/30/96

10/31/96

11/30/96

12/31/96

1/31/97

2/28/97

0 10 20 30 40 50 60 70 80 90 100
Assurance Level (%)

Probability of meeting mid September date
is approximately 7%

90% probability date is January 10, 1997

Figure 6. Schedule probability analysis

Adapting software project estimation to the reality of changing
development technologies 14

Summary

Estimating projects that have new technology are full of
unknowns. To be successful you should:

• Ask specific questions of the developer to find out what
software will be newly developed, what will be reused with
no changes and how much software will be modified.

• In sizing the application be flexible so you are able to
accommodate any new technology.

• Use your historical data to provide insights about how the
organization has assimilated change in the past and what
your current capability is today. Look at your new situation
and apply some professional judgment backed up by
empirical evidence.

• Set realistic expectations - be on the conservative side in
your choice of estimation assumptions.

• When appropriate present alternative estimating scenarios
(add more people, reduce function, etc.).

• Present best case and worse case scenarios - commercial
managers and customers like to know their options.

• Bound your estimates with probability analysis - This
quantifies the amount of uncertainty in the estimate
consistent with the quality of the input assumptions.

• Track progress against the base line plan . This allows you
to confirm the validity of your initial estimation assumptions
and make adaptive forecast if your assumptions were
incorrect, or if the scope of the project changes. By using
this disciplined measurement approach you build a metrics
database as you guide the project through to successful
completion.

Give these ideas a try. I think you will find that they take a lot
of risk out of a risky business.

Adapting software project estimation to the reality of changing
development technologies 15

