=

MEASURES FOR EXCELLENCE
MANAGING
MAJOR DISTRIBUTED

SOFTWARE DEVELOPMENT

Copyright J.W.E Greene
QUANTITATIVE SOFTWARE MANAGEMENT LTD
7 Rue Fenoux 93 Blythe Road
75015 Paris Internet: gsm.europe@pobox.com London W14 OHP
Tel: 33-140-431210 CompuServe: 100113,3364 Tel: 44-171-603-9009
Fax : 33-148-286249 www.gsm.com Fax : 44-171-602-6008

MANAGING MAJOR DISTRIBUTED SOFTWARE DEVELOPMENT

INTRODUCTION

“Effective software process improvement will not start until management
insists that product development work be planned and properly managed
(Ref. 1).” This becomes even more challenging in an increasing number of
major system developments made up from distributed sub-system software
projects. These sub-systems are integrated and validated to provide the final
system and product release. The need is growing to estimate, risk assess,
plan and manage the development of these distributed sub-systems and the
final full system release.

Large scale distributed system developments are now common in
telecommunications, air traffic control, defence and space. They are
recognisable because of their sheer scale. In these systems a release will
often be developed over 2 — 4 years and cost in excess of 200-300 person
years of development effort. Features define the content of a release. The
features are realised by mapping the full set of system feature requirements
across the various sub-systems. Normally this involves building on a large
existing software base made up of the existing sub-systems that are then
modified and extended to engineer the new release.

Figure 1 illustrates in outline the specification and development of a release
that consists of distributed sub-systems.

Requirement Changes

\4

Identify and
Prioritise Features

Determine Development
Constraints :
Time; Staff; Reliability

Y

Map Features on to ;
Specify Release Features | s p Release Integrate/Validate

i ub-systems
Estimate and Risk
Assess :

Each Sub-system v
Full Release

Release
Pilot :
High

Reliability

v
Release Feature Baseline

Figure 1: Release - Sub-systems

Requirement changes are common in these developments because of the
long lead times involved. This adds to the complexity of planning and
controlling the in-progress development both at the individual sub-system
level and the release. A further complexity factor is the integration and
validation of the release once the individual sub-systems are delivered.
These large-scale systems must achieve high reliability because of their
nature. In the final release validation software defects arise not only from the

Copyright QSM Ltd. 22-Apr-99 Page 2

MANAGING MAJOR DISTRIBUTED SOFTWARE DEVELOPMENT

new software but also due to latent defects in the existing code. Substantial
regression tests must be run to checkout the existing software base that may
amount to millions of lines of code.

In summary these distributed developments represent major management
challenges to both developers and equally to purchasers. Purchasers are
concerned to check that supplier’'s development proposals for these large
systems are realistic and provide value for money (Ref. 2). Frequently the
purchaser’s competitive position depends on delivery of all the new features
by the scheduled date, within budget and with high reliability.

Developers and purchasers are faced with a number of key issues:

1. Identifying what features are practical within commercial constraints

2. Ensuring realistic development plans are established that take in to
account uncertainties and quantify risk

3. Agreeing and controlling the software baseline

4. Making progress continuously visible

5. Ensuring delivery takes place with high reliability

BACKGROUND TO THE CASE STUDY

This telecommunications division develops sub-systems at a number of
different locations. These sub-systems are then integrated and the full
release validated. Management is concerned at the history of significant cost
overrun and slippage in these strategic product developments. Pressure is
increasing to reduce the time to market in order to meet the needs of
customers while at the same time improving quality and becoming more
competitive by improving process productivity (Ref. 4.).

Product features change continuously in response to customer demands. An
essential need is to assess the potential risk in developing a set of features
within the time scales demanded and available staff limits. This motivated
management to introduce the techniques described.

ANALYSIS METHOD and THE BASIC DATA

The first step in applying the analysis method is to map the division
development lifecycle to four high level phases. These four phases comprise
1) Feasibility and Architecture, 2) Specification and High Level Design, 3)
Main Software Development, 4) Factory Test and Pilot operation. Major
milestones are defined for each sub-system and the entire release.
Documentation estimates form part of the data. Integration tests at the sub-
system level are quantified. The full release integration tests as well as the
final validation tests and load tests are quantified to enable progress tracking.

Feature mapping is carried out across each sub-system. Modules are
identified that are to be changed or added. Sizing is based on estimating the
size range expressed in terms of the minimum, most likely and maximum
number of source statements. These size range estimates are made for each
module to give the baseline size and uncertainty for each sub-system and the
full release. This data is used to generate high level estimates that are risk

Copyright QSM Ltd. 22-Apr-99 Page 3

MANAGING MAJOR DISTRIBUTED SOFTWARE DEVELOPMENT

protected by taking in to account the size uncertainty. The alternatives of
developing sets of features are evaluated to meet specific development goals
of time, staffing and reliability.

The project managers complete data collection templates. To provide the
data for the entire release these templates are summed and extended to
include the final integration tests for the sub-systems and the full release
validation and load tests.

A key part of the estimation and risk assessment process uses measures of
the process productivity achieved in past projects. This data (at its most basic
for the main software development) comprises the size, time and effort for
phase 3 of the completed sub-systems and releases (Ref. 6).

Estimates are then made taking in to account the management development
constraints such as time, staffing and reliability to determine the risk in
achieving these constraints. Comparison of the new estimates against the
company’s historic data ensures that unrealistic estimates are avoided.

BUILDING THE SUB-SYSTEMS AND RELEASE

Below we show two examples of the baseline plan determined first for a sub-
system (Figure 2) and then for the entire release (Figure 3). In this instance
the release consists of a number of sub-systems, each on of which is
independently estimated and tracked. On the charts the bottom horizontal
axis is time in months and numbers at the top represent major milestones.

Gantt Chart Aggregate Staffing Rate
S 2 3 45 67 8 9 S 2 3 45 67 8 950
40
30 9
208
10
-0

S-SMB

ToVAL

Total Cum Effort Size
S 2 3 45 67 8 9,100 S 2 3 45 67 8 9

a

© &
o O O O O
(spuesnouyy) 0013

-300

L]
200 2

T T
BN

T
* o

1 4 7 10 13 16

Total Defect Rate Total Cum Defects Remaining
S 2 3 45 67 8 9250 S 2 3 45 67 8 9

1 4 7 10 13 16

| 200 1500

1150 §
oy

100 &
2]

50

Lo

.

1000

[SEETEY]

T
* o

1 4 7 10 13 16

16

[E current Plan Life Cycle includes S-SMB, ToVAL
S=Start, 2=CDR, 3=FCC, 4=SIT, 5=UOST, 6=10C, 7=FOC, 8=99R, 9=99.9R

Figure 2: Example of Sub-System Baseline Plan

Copyright QSM Ltd. 22-Apr-99 Page 4

MANAGING MAJOR DISTRIBUTED SOFTWARE DEVELOPMENT

Gantt Chart Aggregate Staffing Rate
3 0 3 1 56 810111216 17 3 0 3 1 56 8gi0111a1% 17
FEAS | —
SHLD | ————
RMBV | ——)
FAPIL ==
4 16 28 40 * 16
Total Cum Effort Size

3 0 8 1 56801046 17 545, & 0 8 1 56 3101118% 17

(spuesnoy)) D01S3

4 16 28 ‘ 4 16 28
Total Defect Rate Total Cum Normalized Defects
3 0 38 1 56 810111815 17 8 0 38 1 56 @1011a% 17

4 16 28 40

[I current Plan Life Cycle includes FEAS, SHLD, RMBV, FAPIL
Figure 3: Example of the Release Baseline Plan

TRACKING PROGRESS AND FORECASTING COMPLETION

Progress is tracked using the baseline plan for each sub-system and the full
release. Every two weeks, or each month, the project manager responsible
for each sub-system supplies high-level progress data. This is used to track
progress for each sub-system. Variance outside the established limits leads
to forecasting the outstanding development plan for the sub-system. The
forecasting makes use of sophisticated algorithms that determine the
coefficient of variance for each progress metric. These coefficients enable
weightings to be entered that reflect the best progress indicators at a given
point in time and the corresponding completion forecast.

The data for all sub-systems is consolidated and used to track the full release.
This continues until all sub-systems are completed and their integration
begins. At this point the progress weightings are set to track the progress in
carrying out the final release integration, validation and load tests. Equally
important are the total defects, the different defect categories and their
behaviour. These inputs and their variance analysis permits forecasting the
completion date for the release to ensure high reliability when the final factory
Gantt Chart acceptance phase is entered

s ¢ sow uuwm 1 (inthis example named FAPIL).

5 6 89 10 11 13 1K 17

0
0

60 60
& 0
e

FEAS

B — Figure 4: Release Progress

Tracking and Release

SHLD | Forecast
(Note in the diagram the upper
line is the plan, below are

shown the progress to date in

black and the forecast in

FAPIL —— | white.)

RMBV

———]

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Copyright QSM Ltd. 22-Apr-99 Page 5

MANAGING MAJOR DISTRIBUTED SOFTWARE DEVELOPMENT

Finally we show an output from tracking the full release defects and
integration tests against their plan and the control bounds used to detect
variance.

Total Cum Normalized Defects

3 1 5 6 29 10 11 18 1% 17
3 1 5 6 29 10 11 12 1% 17 5500

8
8
g 2000

+1500

oo

[SEETEY]

+1000

4 7 10 13 16 19 22 25 28 31 34 37 40

Integration Test (Cum)

0 3 1 5 6 29 10 11 18 1% 17
0 3 1 5 6 g9 10 11 12 1% 17 5500

8
8
g 2000

1500

[,

LINI

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40

— current Plan [l Actual -A- Interpolated [| Current Forecast Green Control Bound Yellow Control Bound

Figure 5: Defects and Integration Tests
(Note: Actual progress data points are black, forecast data are white)

OBSERVATIONS AND CONCLUSIONS

The results illustrated here from analysing a large scale distributed
development show that it is practical to treat the individual sub-systems as
projects in their own right. The full release behaves as a large development.
Here the sub-systems are consolidated and their final integration and
validation are included as part of the full release development.

High reliability determines when release delivery should take place. Reliability
depends on the defects originating from the sub-systems. Tracking the sub-
system defect behaviour reveals the contribution that factors such as time
pressure and software size make to the defects found in each sub-system and
later during the release integration and validation tests. These insights offer
ways to improve reliability and avoid the premature delivery of the sub-
systems and the release (Ref. 9).

The initial feature list is a key input to evaluate what can be developed within
a given time and with available staff. Mapping the features on to the sub-
systems and estimating the size range of the modified and new modules
permits the rapid evaluation of the feature content that it is possible to develop
within these management constraints. A risk-protected baseline estimate is
produced that is viable within quantified management constraints and
consistent with past projects.

Once development starts the quantified feature size baseline allows the
impact of change requests to be determined. The potential impact of change

Copyright QSM Ltd. 22-Apr-99 Page 6

MANAGING MAJOR DISTRIBUTED SOFTWARE DEVELOPMENT

requests on individual sub-systems as well as the full release is used to
decide whether to include each change request or defer to the next release.

As noted earlier (Ref. 1) software process improvement depends on product
development being planned and properly managed. In practice the
management techniques outlined here form part of a software control office.
This office continuously evaluates and reports on all current developments
and ensures that future release plans are realistic (Ref.7). We find the
control office safeguards against runaway projects as well as satisfying many
SEI-CMM Key Process Areas (Ref 4) and brings significant commercial
benefit (Ref. 5). Runaway projects are common and disastrous in these large-
scale complex developments (Ref. 8).

Disasters are avoided by sizing the features to determine what can be
developed within specific constraints and their level of risk. In this way a
realistic baseline-planning estimate is produced. Progress visibility during
development is then ensured using basic data. This visibility results in the
early detection of any variance against the baseline plan and initiates
immediate corrective action.

These two aspects, a realistic estimate and continuous visibility during
development, are fundamental to the successful management of software
projects by development and purchasing organisations. While true for all
software developments this is even more important where large scale
distributed sub-systems are involved.

Jim Greene is Managing Director of Quantitative Software Management Europe in Paris,
France: telephone 33-140431210; fax 33-148286249. He has over 30 years experience in
software engineering, with a particular interest in management methods used by development
and purchasing organisations based on the quantification of software development.

Ref.1. Watts S. Humphrey “Three Dimensions of Process Improvement - Part 1: Process
Maturity " CROSSTALK The Journal of Defense Software Engineering February 1998.

Ref. 2. Geerhard W. Kempff “Managing Software Acquisition” Managing System Development
July 1998 Applied Computer Research Inc. P.O. Box 82266, Phoenix, AZ, USA.

Ref. 3. J. W. E. Greene “Sizing and Controlling Incremental Development” Managing System
Development November 1996 Applied Computer Research Inc. P.O. Box 82266, Phoenix,
AZ, USA.

Ref. 4. J. W. E. Greene “Software Process Improvement- Management Commitment,
Measures and Motivation” Managing System Development February 1998 Applied Computer
Research Inc. P.O. Box 82266, Phoenix, AZ, USA.

Ref. 5. Lawrence H. Putnam “The Economic Value of Moving up the SEI Scale Managing
System Development July 1994 Applied Computer Research Inc. P.O. Box 82266, Phoenix,
AZ, USA

Ref. 6. : L.H. Putnam “Measures For Excellence: Reliable Software, On Time, Within
Budget:” Prentice Hall New York 1992

Ref.7 J.W.E. Greene, The Software Control Office EC2 Software Engineering Conference
Toulouse 1991

Ref. 8: J.W.E. Greene Getting a Runaway Software Development under Control EC2
Software Engineering Conference Toulouse 1990

Ref. 9: J.W.E. Greene “Avoiding the Premature Delivery of Software” QSM paper see
www.gsm.com 1996

Ref. 10: For further information on QSM’s practices, refer to Lawrence H. Putnam and Ware
Myers, Industrial Strength Software: Effective Management Using Measurement, IEEE
Computer Society Press, Los Alamitos, CA, 1997, 309 pp.

Copyright QSM Ltd. 22-Apr-99 Page 7

