

MEASURES FOR EXCELLENCE

Ensuring Delivery of Highly Reliable

Complex Software Releases

Copyright J.W.E Greene
QUANTITATIVE SOFTWARE MANAGEMENT LTD

7 Rue Fenoux 41A Aynhoe Road
75015 Paris Internet: qsm.europe@pobox.com London W14 0QA
Tel: 33-140-431210 CompuServe: 100113,3364 Tel: 44-207-603-9009
Fax: 33-148-286249 www.qsm.com Fax : 44-207-602-6008

mailto:qsm.europe@pobox.com

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

INTRODUCTION
Software projects are notorious for being late, over budget and delivered with
poor reliability. These problems are even more acute in an increasing number
of major system developments where the release is made up from separate
sub-system software projects.

An example is found in Mobile Telecommunication product releases. Here a
”typical” release consists of at least three sub-systems, all software intensive:

1 Transceiver
2 Transceiver Control
3 Control Centre

Each sub-system is developed separately. Then the sub-systems are
integrated and validated to provide the final product release. The challenge is
to estimate, plan and manage the development of these distributed sub-
systems and the final full system release. An overriding concern is to deliver
the release with confidence in high software reliability. Customers for the
release are motivated to monitor the software reliability as development
progresses in order to safeguard their business interests.

These complex software intensive developments are now common in
defence, telecommunications, air traffic control, and space. They are
recognisable because of their sheer scale. In these developments a release
is often developed over 2 – 4 years and cost in excess of 200-300 person
years of development effort. Features define the content of a release. The
features are realised by mapping the requirements across the sub-systems.
Normally this involves building on a large existing software base made up
from the existing sub-systems that are modified and extended to engineer the
new release.

These complex software projects must achieve high reliability because of their
nature. Software defects arise in the final release validation, not only from
the new software but also due to latent defects in the existing code.
Substantial regression tests are run to checkout the existing software base
that may amount to millions of statements. Requirement changes are
common in these developments because of the long lead times involved. This
adds to the complexity both at the individual sub-system level and the release.

In summary these complex developments represent major management
challenges both to developers and to purchasers. Frequently the purchaser’s
competitive position depends on delivery (time to market) of all the new
release features by the scheduled date, within budget and with high reliability.
(Ref.2)

Figure 1 illustrates the specification and development of a release where
major sub-systems developed separately and are then integrated and
validated.

Copyright QSM Ltd. 27-Oct-03 Page 2

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

Sub-system 1

Release Integrate/ValidateSpecify Release Features

Release
Pilot :
High

 Reliability

Requirement Changes

Identify and
Prioritise Features

Determine Development
Constraints :
Time; Staff; Reliability

Estimate and Risk
Assess :
Each Sub-system
Full Release

Release Feature Baseline

Sub-system 2

Sub-system 3

Sub-system 4

Map Features on to
Sub-systems

Figure 1: Release - Sub-systems

BACKGROUND TO THE CASE STUDY

The case study is from the point of view of the purchaser who requires
software planning and progress data as specified under a formal commercial
contract with the supplier. This contract requires the supplier to provide high-
level development estimates and plans, on-going progress data and sets
delivery acceptance criteria based on a quantified mean time to defect
(MTTD).

The estimate data is first used to check that the schedules proposed for each
sub-system and the release are realistic and that each development
represents value for money. The plan data provides the baseline to monitor
progress.

The contract requires the supplier to provide progress data every two weeks.
The defect information consists of software defect numbers and classes. This
defect data is supplied once individual modules within each sub-system are
formally handed over by programmers for integration. Additional progress
data relates to staff numbers, module status and code production, milestones,
and integration and validation test cases.

The supplier of these advanced telecommunications products develop sub-
systems at different locations. Each location provides the progress data up to
the point when the individual sub-system is passed over for the final product
release integration and validation.

Copyright QSM Ltd. 27-Oct-03 Page 3

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

The case study shows how the defect data at the sub-system and release
level is used to provide evidence of the reliability throughout development and
to forecast the remaining defects.

RELIABILITY MODEL and THE BASIC DATA

The defect monitoring uses the Rayleigh function to forecast the discovery
rate of defects as a function of time throughout the software development
process. Empirical evidence shows the Rayleigh model closely approximates
the actual profile of defect data collected from software development efforts.
Our research at QSM shows there is a solid theoretical basis for its use in
software reliability modelling. (Ref 6) Independent analysis by IBM confirms
the Rayleigh function as a sound basis for defect modelling. (Ref 11).

The generic form of the Rayleigh model is “tuned” using the actual defect data
reported within each development. The model then forecasts the defects that
remain and the key milestone dates when specific levels of reliability will be
achieved. Where very high reliability is required this is the point in time when
99.9 % of the theoretical software defects have been discovered.

Simple extensions of the model provide other useful information. For
example, defect priority classes are specified as percentages of the total.
This allows the model to predict defects by severity classes over time. The
tuning for the defect classes is again made using the actual reported defects
and adjusted as development progresses. In the case study the reported
software defect classes are:

1 Critical
2. Major
3. Minor

INDIVIDUAL SUB-SYSTEM PROGRESS DATA: SOFTWARE DEFECTS

A monthly summary of the progress data from the three sub-systems is shown
below in Figure 2. Sub-system 1 begins about 1 year ahead of the other two
sub-systems. This is often the case due to a particular sub-system having
more features and being more large and complex than other sub-systems.

The defects are reported once the integration tests for each sub-system
begin. Each month the columns show the total defects and the breakout in to
the three software defect classes.

RELEASE CONSOLIDATED DEFECTS

The data in Figure 2 is consolidated for all sub-systems and is used to track
the overall defects for the product release. This continues for each sub-
system until it completes and is delivered for final release integration, load
tests and validation.

Copyright QSM Ltd. 27-Oct-03 Page 4

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

As defects are found during the final release integration these are identified by
sub-system and communicated back to the developers for fixing. Each defect
continues to be classified according to severity. The defects are used to tune
the Rayleigh defect model and forecast the outstanding defects and the date
when the release will be sufficiently reliable to meet the acceptance criteria
defined in the contract.

SUB-SYSTEM 1 SUB-SYSTEM 2 SUB-SYSTEM 3
Defects Defects Defects

Month Staff Code Total Crit Maj Min Staff Code Total Crit Maj Min Staff Code Total Crit Maj Min
1 2
2 1 4500
3 2 4641
4 2 5522
5 3 9802
6 3 16760
7 4 19833
8 6 22682
9 7 30831
10 9 31642
11 10 42242
12 5.5 44402 1 1500
13 8.5 50611 15 7 8 5 3300 4.5 721
14 12 53589 38 2 13 23 8 7769 6.5 1537
15 11 56211 55 26 299 15.5 16126 13 2592
16 10.5 58193 78 33 45 20 19716 10 2 5 3 14.5 3879 23 1 15 7
17 10 60368 13 7 6 11 19716 35 10 18 7 18 5871 53 6 29 18
18 9.5 62520 18 3 15 12 19716 24 1 15 8 19.5 5871 36 4 24 8
19 8.5 62984 24 6 18 12.5 22334 54 3 21 30 18 6046 37 3 24 10
20 7.5 63322 6 2 4 10 23850 38 6 11 21 15.5 6492 64 6 36 22
21 6 63789 2 2 6.5 25468 63 1 12 40 11 6575 60 1 25 34

Figure 2: Sub-system Progress Data

FORECASTING THE OUTSTANDING DEFECTS

Figure 3 shows the current cumulative defects found by month 21. A total of
750 actual defects are reported. This data is used to tune the defect model
and forecast the number of defects that remain to be found and fixed. The
results show that a further 600 defects of all classes remain to be found. High
reliability for the full release is achieved around month 33.

0

250

500

750

1000

1250

1500

3 6 9 12 15 18 21 24 27 30 33 *

C
um

. D
efects

Development Months

Cumulative Total Defects : All Sub-systems

Release forecast
defects remaining

Total cumulative
defects reported
each month

Remaining~600

Total found:~ 750

Figure 3:
Cumulative Actual
Defects and
Forecast Remaining
Defects

Copyright QSM Ltd. 27-Oct-03 Page 5

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

ACCEPTANCE MILESTONES: MEAN TIME TO DEFECT

Purchasing sets the contractual delivery acceptance in terms of the software
mean time to defect (MTTD). The MTTD is simply the average time between
software failures. This is calculated as the reciprocal of the average number
of defects within a given period. For instance if 20 defects are found each
working month of 20 days then on average the MTTD is one day between
each defect.

The contract sets MTTD objectives using this measure. No dates are set for
delivery; acceptance (and payment) is linked to MTTD.

Defects are tracked (and forecast) throughout the development of each sub-
system as well as the entire release. Release acceptance begins when
concrete evidence exists that the supplier meets the MTTD acceptance
criteria. Quality continues to be improved after this first delivery.

In practice three MTTD milestones are set (Figure 4 illustrates):

1. RFA: Ready for Acceptance, marks the first delivery to the purchaser to

start a factory acceptance test (typically this is a MTTD of 5 days)
2. RFP: Ready for Production, is the point at which the release is introduced

at a single location as a pilot (MTTD 15 days)
3. RFM: Ready for Maintenance, during the pilot the final defects are found

and fixed. This marks the start of rolling out the new highly reliable
release. (MTTD 30 days)

Figure 4:
MTTD
Acceptance
Milestones

MTTD
Acceptance MilestonesTotal Defect Rate

0

10

20

30

40

50

60

Jan
'94

Apr Jul Oct Jan
'95

Apr Jul

READY FOR
ACCEPTANCE

READY FOR
MAINTENANCE

RFA RFP RFM

MEAN TIME TO
DEFECT : MTTD

READY FOR
PRODUCTION

M
EA

N
 TIM

E TO
 D

EFEC
T D

A
YS

M
onthly D

efects

Copyright QSM Ltd. 27-Oct-03 Page 6

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

OBSERVATIONS AND CONCLUSIONS

The results shown here for a large-scale complex development demonstrate
that it is practical to treat the individual sub-systems as software
developments in their own right. The sub-systems are consolidated and their
final integration and validation are included as part of the full release
development. The full release behaves as a single large development.

Reliability depends on finding and fixing the software defects originating from
the sub-systems. Tracking the sub-system defect behaviour reveals the
contribution that factors such as time pressure and software size make to the
defects found in each sub-system and later during the release integration and
validation tests. These insights offer ways to improve reliability and avoid the
premature delivery of the sub-systems and the release (Ref. 9). High reliability
measured by the MTTD determines when release delivery takes place.

In practice the management techniques outlined here form part of a software
control office. This office continuously evaluates and reports on all current
developments. This ensures that completed releases are only accepted and
payments made when specific reliability objectives are achieved.

Future release plans are evaluated to determine if these are realistic (Ref.7).
Disasters are avoided by sizing the features to determine what can be
developed within specific constraints and their level of risk. In this way a
realistic baseline-planning estimate is produced. Progress visibility during
development is then ensured using the contractual progress data. This
visibility results in the early detection of any variance against the baseline plan
and initiates immediate corrective action.

These two aspects, a realistic estimate and continuous visibility during
development, are fundamental to the successful management of software
projects by development and purchasing organisations. While true for all
software developments this is even more important where large-scale
complex sub-systems are involved.

Jim Greene is Managing Director of Quantitative Software Management Europe in
Paris, France: telephone 33-140431210; fax 33-148286249. He has over 35 years
experience in software engineering, with a particular interest in management
methods used by development and purchasing organisations based on the
quantification of software development.

Ref.1. Watts S. Humphrey “Three Dimensions of Process Improvement - Part 1: Process
Maturity ” CROSSTALK The Journal of Defense Software Engineering February 1998.
Ref. 2. Geerhard W. Kempff “Managing Software Acquisition” Managing System Development
July 1998 Applied Computer Research Inc. P.O. Box 82266, Phoenix, AZ, USA.
Ref. 3. J. W. E. Greene “Sizing and Controlling Incremental Development” Managing System
Development November 1996 Applied Computer Research Inc. P.O. Box 82266, Phoenix,
AZ, USA.
Ref. 4. J. W. E. Greene “Software Process Improvement- Management Commitment,
Measures and Motivation” Managing System Development February 1998 Applied Computer
Research Inc. P.O. Box 82266, Phoenix, AZ, USA.

Copyright QSM Ltd. 27-Oct-03 Page 7

ENSURING HIGH RELIABILITY IN COMPLEX SOFTWARE PROJECTS

Ref. 5. Lawrence H. Putnam “The Economic Value of Moving up the SEI Scale Managing
System Development July 1994 Applied Computer Research Inc. P.O. Box 82266, Phoenix,
AZ, USA
Ref. 6. : L.H. Putnam “Measures For Excellence: Reliable Software, On Time, Within
Budget:” Prentice Hall New York 1992
Ref.7 J.W.E. Greene, The Software Control Office EC2 Software Engineering Conference
Toulouse 1991
Ref. 8: J.W.E. Greene Getting a Runaway Software Development under Control EC2
Software Engineering Conference Toulouse 1990
Ref. 9: J.W.E. Greene “Avoiding the Premature Delivery of Software” QSM paper see
www.qsm.com 1996
Ref. 10: For further information on QSM’s practices, refer to Lawrence H. Putnam and Ware
Myers, Industrial Strength Software: Effective Management Using Measurement, IEEE
Computer Society Press, Los Alamitos, CA, 1997, 309 pp.
Ref. 11 : S.H. Kan Modeling and Software Development Quality IBM Systems Journal Vol 30
No.3 1991

Copyright QSM Ltd. 27-Oct-03 Page 8

http://www.qsm.com/

	MEASURES FOR EXCELLENCE
	10 Years Apart
	
	
	Copyright J.W.E Greene

	The 1992 and 2002 Developments Versus The 2002 Industry Trend Lines
	1992 and 2002 Process Productivity (PI) and Time Pressure (MBI) Benchmark Findings
	Meanwhile the time pressure measure (MBI) has increased from an average of around 2 in 1992 to 4 in the 2002 projects. This reflects the reduced time to market to deliver the Telecom products.
	The Benchmark Differences between 1992 and 2002
	Quantifying the Bottom Line Impact Over the 10 Years
	For the purpose of calculating the commercial benefits we use the average size of the 2002 developments which is 120,000 statements consisting mainly of C and C++. There are clear benefits due to the improved process productivity. These are shown next.
	In Figure 4 we illustrate the benefits of the process improvement based on the average size with the time pressure found in 2002 (MBI 4).
	The benchmark measurement results over the 10 years show that:
	
	
	Time Pressure Consequences
	Conclusions

	HighReliability.pdf
	Ensuring�Delivery�of
	Copyright J.W.E Greene
	INTRODUCTION
	
	Figure 1: Release - Sub-systems

	BACKGROUND TO THE CASE STUDY
	RELIABILITY MODEL and THE BASIC DATA
	INDIVIDUAL SUB-SYSTEM PROGRESS DATA: SOFTWARE DEFECTS
	
	RELEASE CONSOLIDATED DEFECTS
	FORECASTING THE OUTSTANDING DEFECTS

	ACCEPTANCE MILESTONES: MEAN TIME TO DEFECT
	OBSERVATIONS AND CONCLUSIONS

