

Build It Faster!

Lawrence H. Putnam and Ware Myers

Quantitative Software Management, Inc.

"Surviving in the marketplace means 'first to market.'"
Stephen E. Cross, director, Software Engineering Institute, Carnegie Mellon University i

"It's still hard to build software quickly, reliably and of high quality. . . Software is
increasingly more critical, it needs to be delivered faster, and it needs to be of higher
quality."
Eric Schurr, in charge of Marketing, Rational Software Corporation, at Toronto
Worldwide Symposium, 1999.

You have probably seen statements like these a few times. You may have even made
them yourself when you were called upon to make a speech. "Faster and better"--that is
the price we pay for living in a competitive society. But we also reap the rewards. If we
are a user of software--and we all are nowadays--we get a wide range of desirable
products--faster and better.

Enough of that! Back to the anvil--how can we develop software faster? In particular,
how can metrics help us accomplish this goal? Let's take another look at the relationship
that describes software development. First, let's make the general statement:

A product of quality is achieved with effort over time
at a process productivity

Second, let's substitute metrics--some terms that we can measure--for the
italicized terms:

Size (at Reliability) = Efforta x Timeb x Process Productivity

(We suspect that the software relationship is complicated, so we put a couple of
exponents in it.)

Now we have a relationship that is subject to the rules of algebra. That permits us to
rearrange the relationship to show what Time depends on:

Timeb = Size (at Reliability) / (Process Productivity)(Efforta)

After years of investigation of data from completed projects, we established the value of
the exponents:

 (Time4/3) = Size/(Process Productivity)(Effort1/3)

In this form, we see that schedule Time depends upon the other three metrics: Size,
Process Productivity, and Effort. "Faster" means that we want to reduce Time.
Algebraically, we can do that by reducing Size, increasing Process Productivity, or
adding to Effort. On account of those fractional exponents, however, all three of these
effects are nonlinear, especially the Effort one.

Let's look first at Effort

The first recourse of managers, when they suspect the schedule is tight, is often to pour
on the horses. In terms of the foregoing equation, they beef up the Effort term. They fail
to call to mind Fred Brooks' long-standing advice:

"When schedule slippage is recognized, the natural (and traditional) response is to add
manpower. Like dousing a fire with gasoline, this makes matters worse, much worse.
More fire requires more gasoline, and thus begins a regenerative cycle which ends in
disaster." ii

Now, looking at the equation, we see the formal justification for his famous, but also
widely ignored, law:

"Adding manpower to a late software project makes it later."

The reason is that the equation reduces the Effort term to its cube root. The cube root of 3
person-years, for instance, is only 1.44 person-years. Suppose we really go gung-ho on
the Effort and increase it one third to 4 person-years. The cube root of 4 person-years is
1.59 person-years, That is only 10 percent greater than 1.44 person-years. The equation
greatly reduces the influence of Effort on Time.

At the same time, the equation raises the Time term to a small power: four thirds. That
adds to the effect. All together, there is a power of 4 ratio between Time and Effort--our
Fourth Power law. To put the effect in numerical terms, tripling the Effort reduces the
Time schedule by less than one third. Among those who have examined this relationship,
there is disagreement as to just what this ratio is. Some think it is less than four, but it is
certainly large.

Moreover, for a given Size project and a given Process Productivity, there is a minimum
development Time. That means that no matter how much you increase Effort, you can't
reduce Time below that minimum. What that minimum is, for any given project, depends
upon the Size of the project and the Process Productivity at which the work is pursued.

Above the minimum development Time, the maximum practical schedule is also limited.
To put it another way, you can reduce Effort to about one third of that required at the
minimum development Time by extending your schedule to about 130 percent of
minimum. We reach the conclusion that merely increasing Effort is not going to get
software delivered much faster.

Next, let's look at Size

What else could we do?

According to the equation, as well as common sense, if we can reduce the Size of the
project, we reduce the schedule Time.

Bells and whistles. Projects resort to the time-honored dropping of features when they run
out of time. They let things that the customer doesn't need much anyway slide into the
next release. With an estimating method that determined in advance that they could not
build all these features in the time the customer desired, they could trim these bells and
whistles earlier – before they started. Knowing that these additional features would
probably come on future releases, the project could plan the architecture to accommodate
them.

Series of releases. A long time ago the software industry used to set up projects on a
five-year time scale. That usually turned out to be impractical. The underlying technology
changed more rapidly than that:

• tubes to transistors to integrated circuits;
• mainframes to time sharing to minicomputers to personal computers to

workstations to Internet-based devices connected to server farms;
• assembly language to third-generation languages to fourth generation languages

to GUI environments and code generators;
• structured analysis and design to object-oriented analysis and design.

Besides the technology changes, the society in which the software was to operate
changed. For example, business re-engineering came along. By the time the software was
completed in five years, say, it was a poor match to its application.

The answer was to divide a big project into a number of releases. Then we try to hold
each release to no more than, say, two years. In that period, while change does take place,
it is usually within the scope for which we can plan. At the same time we do not bite off,
especially in the first release, more than we can chew in the schedule time available to us.

Reuse. The third way to reduce the Size of the system, at least the effective size (in new
and modified LOC) from the developers' standpoint, is to not design and implement
every part of the system. In other words, to insert already designed and built components.

Of course, you are going to rebut that reuse is a figment of our fevered imagination. And
we are going to freely admit that it is not easy. But we also know that more than a few
companies are having various degrees of success with what we now call component-
based development. You architect your system into subsystems, sub-subsystems, and
ultimately components with clearly defined interfaces so that you can insert available
components into your architecture.

It takes a while. You are not going to learn how to reduce Size overnight by going to the
series of releases or to component-based development. Experience indicates that they
take considerable thought over a period of years. If we pursue something of this sort, we
might expect to reduce project size gradually. That reduces the time to market.

For one thing, dividing a long time-scale project into a number of releases implies that
you cooked up a long-term architecture early in the first release, that is, an architecture on
the basis of which you could grow successive releases. If your first architecture, on the
contrary, turned out to be impractical, when incorporated as the first release, then you
might have to start all over again with the second release. Instead of putting out a second
generation in two years, it might then take four years. The point is: thinking through an
enduring architecture, an architecture that can support the changes that several releases
will bring, is not easy. When you can do it, however, you can reduce Size and get to
market faster.

Finally, Process Productivity

If we can increase Process Productivity, we reduce development Time. That is what you
suspected all along. That is what the Software Engineering Institute's Capability Maturity
is trying to do. Experience indicates that increasing productivity takes time at best. At
worst, it is fraught with difficulties. Not everyone has succeeded in doing it.

Still, the companies reporting to our database have been improving their Process
Productivity during the 1980s and 1990s. In business systems applications, the average
rate of improvement in Process Productivity has been 10 percent per year; in engineering
systems, 8 percent; in real-time systems, 6 percent. These rates are well in excess of the
average productivity gain in the United States economy during those years: around one
percent. Of course, the companies reporting to our database are probably well above the
average of all companies. Still, the figures show what good companies can accomplish.

From another point of view, however, progress has been slow. One company in the
business-systems database sustained a 16 percent per year improvement rate for about 15
years. That is the best record we have. It shows what is possible. That is close to twice as
good as the average.

Another way of looking at what is possible is to look at the process productivity gap
between companies at the 84th percentile (one standard deviation above the mean) and
those at the 16th percentile (one standard deviation below the mean). This middle range

excludes the exceptionally good software organizations and the very poor ones. It is the
range where most of us fall.

In business systems that gap is 1060 percent; in engineering systems, it is 590 percent; in
real-time systems, it is 550 percent. Faced with differences of those magnitudes, annual
gains in the range of 5 to 10 percent look pretty small. Much more is certainly possible
for individual companies.

So, you have Process Productivity, Size, and Effort to play with to Build it Faster. Just
don't expect the thought alone to work a miracle. You have to reason it out and then work
to make it happen.

i Stephen E. Cross, "A Message from the Director," Bridge, Issue Two, 1997, p. i.
ii Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley,
Reading, Mass. (Anniversary Edition) 1995, 323 pp.

	Build It Faster!
	Let's look first at Effort
	Next, let's look at Size
	Finally, Process Productivity

