

FROM THE QSM DATABASE – PRODUCTIVITY STATISTICS BUCK
15 YEAR TREND

By Doug Putnam

The QSM database is one of the most comprehensive repositories of modern day
software projects collected worldwide. It contains trends from over 5,400 completed
software projects from the U.S./North America, Europe, and the Far East, representing
over 200 million lines of code, 100+ development languages, and 55,000 person years
of effort. During the course of the last 20+ years, QSM has maintained this database
and licensed it to companies to serve as their own repository for their software and IT
metrics.

The largest segment of data currently in the repository represents IT projects. Over
the years, QSM has continuously monitored application-development productivity with
respect to cost reduction, speed, and quality improvement. Generally, since the early
1980’s, all of these dimensions have steadily improved.

However a recent productivity study revealed that this trend has undergone a reversal
during the most recent three-year time period. IT applications completed between
1982 and 2000 were extracted from the database. The data sample was then sorted
into six three-year time periods spanning 18 years. In each time period, trends were
plotted for project size, average Productivity Index (an indexed measure of overall
project efficiency), schedule, effort, staff, mean time to defect (MTTD) and reuse.

In the context of significant industry dynamics - Y2K, enterprise resource planning
(ERP) solutions, the dot-com explosion/implosion, outsourcing, object oriented
(OO)/client server development, etc. - the charts reveal significant findings in the
context of long-term productivity trends. These are described below.

Developed Software Size Behavior Over Time

Figure 1 shows the average project size based on new-plus-modified functionality for
IT projects, beginning with a three-year time period starting in 1982 and continuing
through 2000.

The overall trend through the 1980’s and early 1990’s was a steady reduction in
project size. On average, the size of software projects was cut in half during the 15-
year period from 1982 to 1997. This was generally the result of more powerful
development languages as technology progressed, along with deliberate strategies by
IT organizations to manage projects to 12- to 18-month schedules. Generally
speaking, there was also implementation of reuse architectures such as object libraries
and classes as “buy and modify” IT strategies, versus building applications from
scratch.

In the 1997-2000 time frame, a radical change occurred, in which the average size of
IT projects virtually doubled. This was the case in size measured by both function
points and lines of code (LOC), and it reversed the 15-year trend in a dramatic way.

One potential cause of this reversal is the explosion of Internet, e-commerce, and Web
development architectures during the 1997-2000 time frame. This coincides with
many first-generation Web products (both sites and tools) where there was no
previous existence of reusable code. Many of these applications had to be built from
scratch.

Although no one can say for certain, we speculate that software size may reduce in
the near future in a gradual fashion, as the architectures built during the last three
years are leveraged in future generations of IT projects.

Average Effective SLOC vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

20

40

60

80

100

120

Average E
ffective S

LO
C

 (thousands)

Business Sy stems

Figure 1. Average Effective Size vs. three-year time periods over an 18-year period.

Average Productivity Index Performance Over Time

The QSM Productivity Index is an aggregate measure of process productivity,
calculated from metrics for size, time, and effort of completed software projects.
These metrics represent three of the four core measures expressed by the Carnegie
Mellon Software Engineering Institute Minimum Data Set - an established industry
standard.

The Productivity Index (PI) is different from traditional measures of applications
productivity that emphasize only two dimensions of metrics, such as output size (i.e.
function points or lines of code), per unit effort (person-months). It incorporates
shortening or lengthening of the development schedule by including development time

 2

in its calculation. Therefore, each index rise corresponds to a reduction in effort
(about 25 %) and/or a shortening in time (about 10 %) from the previous value.1

The calculated PI increased over the 15-year period from an initial base value of 13.8
to 17.3 by the year 1997. However, during the 1997-2000 time frame, the three-year
average dropped to 16.6.

We believe that several factors may have been at play to drive productivity downward.
These include:

� The adverse impact of resources diverted to Y2000 projects.

� Labor churn from rotating staff to e-commerce and web initiatives.

� Significant learning curves associated with customizing and implementing large-
scale applications such as ERP.

� Dramatic shift in project complexity from traditional IT applications to those that
incorporate more complex elements such as wireless telecommunications, system
software, fiber optic, and even real-time elements.

Average PI vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

5

10

15

20

A
verage P

I

Business Sy stems

Figure 2. Average Productivity Index vs. 3-year time periods over 18 years

1 Traditional metrics for productivity do not include time. Therefore, if effort improves but
schedules lengthen, their “improvement” can potentially be misleading.

 3

Staffing Performance Over Time

Figure 3 shows an average staffing profile on a typical project over time. The trend
had been reasonably constant in the range of 6 - 7 people per project during the
1990’s. In 1997 to 2000, the average project team increased to 9 people. That’s
about a 50 % increase in average team size.

There appear to be two factors contributing to this trend: project size growth and an
acceleration of project deadlines to complete at Internet Speed. In essence,
companies are striving to build even more functionality in less time, and react to these
pressures by adding more people to projects.

Average MB Average Staff (People) vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

2

4

6

8

10

12

A
verage M

B
 A

verage S
taff (P

eople)

Business Sy stem s

Figure 3. Average Staffing vs. 3-year time periods over the 18 years.

 4

Schedule Performance Over Time

Figure 4 shows the average duration of projects for each three-year time period. In
1982, the typical IT project lasted nearly 2.5 years. By the 1994-1997 time frame,
average duration had dropped to 8 months! That’s a pretty impressive trend over the
15-year time period. The two most important driving factors were the reduction in
project size and the improvements in productivity (see figures 1 and 2). Both
behaviors result in schedule reduction.

It’s interesting to note the industry studies on overruns and slippages, beginning with
a study by the U.S. General Accounting Office in 1979, up to and including the recent
Standish Group Chaos report in the late 1990s. The data is irrefutable – projects have
completed faster and faster every year. One can only surmise that the industry
“overrun and chaos” studies reflect that demands and expectations simply outstrip
even this dramatic rate of improvement. Internet-speed deadlines, overly optimistic
estimates, and scope growth/change may be more believable culprits with respect to
projects being “late”.

However, in the 1997-2000 time frame, this trend sustained a reversal, in which the
average project schedule grew to 9.5 months. This is likely due to the combination of
project growth and the aforementioned drop in the QSM Productivity Index.

Average Life Duration (Months) vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

5

10

15

20

25

30

35

Average Life Duration (M
onths)

Bus iness Sy stems

Figure 4. Average schedule vs. 3-year time periods over the 18 years.

 5

 Effort Performance Over Time

Figure 5 shows the average effort for each time interval. In the 1982 – 1985 time
frame the average effort per project was over 165 person months; 15 years later, that
figure dropped dramatically to less than 60 person-months.

However, in the 1997-2000 timeframe, average project effort (and associated cost)
nearly doubled to over 100 person months, at a cost of about US $1.5 million. This is
a dramatic reversal of the previous 15-year trend. It appears to be a combination of
project growth/drop in reuse, the 50 % increase in average team size, and the modest
drop in productivity.

One might expect that rising project costs might be a factor in companies attempting
to reduce costs by outsourcing in the economic climate over the last several years.2

Average Life Effort (MM) vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

50

100

150

200

Average Life E
ffort (M

M
)

Business Sy stems

Figure 5. Average Effort vs. 3-year time period for the 18 years.

2 It should be noted that the QSM Database is not restricted to projects built in-house. It contains statistics for both in-
house and outsourced projects.

 6

Software Reuse Performance Over Time

Figure 6 shows the trend in software reuse. The reuse is expressed as the percentage
of reuse that was achieved during the three year time period. With the exception of
the initial three-year data segment, the overall trend from 1985 to 1997 was an
increase of software reuse. This approached 65% during the early and mid 90’s.

From 1997 – 2000, the reuse trend retreated back to approximately 50%. We believe
that most of the Internet and first generation object-oriented projects were comprised
of new development.

Looking forward, it’s likely that 60-70% reuse is a practical upper limit that can be
realistically expected over a broad range of products in an organization in the normal
course of business.

Average Unmodified % SLOC vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

20

40

60

80

Average U
nm

odified %
 S

LO
C

Business Systems

Figure 6. Average reuse vs. 3-year time periods for the 18 years.

 7

Mean Time to Defect Over Time

Figure 7 shows the trend for reliability at delivery over time. The reliability is
expressed as Mean Time to Defect (MTTD), or the average time between occurrences
of runtime errors in a software application.

The data shows that MTTD remained relatively constant during the 1980’s at about
five days on average, and improved to just under nine days during the 1994-1997
period. Then, during the three-year segment from 1997 to 2000, it improved
dramatically to an average of 12.5 days.

Contributing factors are likely to include improved process maturity and more
attention to quality issues. Many modern-day software applications also require 24
hours-per-day, 7 days-per-week operation, with greater emphasis on system
availability. All of these advances appear to be producing good results with respect to
quality.

Average MTTD 1st Month (Days) vs FOC Year

1982-1985 1985-1988 1988-1991 1991-1994 1994-1997 1997-2000
FOC Year

0

5

10

15

20

A
verage M

TTD 1st M
onth (Days)

Business Sy stems

Figure 7. MTTD vs. 3-year time period over the 18 years.

 8

Conclusions

In summary, the data reveals significant changes in applications productivity in the
1997 – 2000 time frame. With the exception of quality improvements, all other
indicators reversed a long-term 15-year trend.

� Staffing was higher.

� Effort was higher

� Schedules took longer.

� Software reuse was lower.

� Project size (new + modified functionality) was much larger.

� Productivity was down.

We speculate that several underlying factors were at play during this time frame,
which may have been the root causes of these results. It appears that they comprise
a significant increase in IT project complexity during a time of dramatic change. In this
context, temporary decreases in productivity are to be expected. These factors
include:

� Implementation of off-the-shelf ERP solutions was attempted on a large scale in
many organizations around the Y2000 time frame. In many cases, the
complexity of these endeavors was widely underestimated during the planning
stages.

� Object Oriented (OO) development was started in earnest. This meant a new
infrastructure had to be built for all application-specific classes. Many
organizations discovered that implementing OO was more difficult than
anticipated. It took more time and more effort during its initial adoption.

� Web based development and the advent of dot-com enterprises pulled many
talented engineers away from traditional development, producing turbulence as
highly skilled people left for the Internet startups and lowered the overall skill
level in the Fortune 1000 companies.

The data shows that productivity and the other associated management metrics don’t
always improve linearly in year over year. We believe the data reflects the turbulence
that was experienced during the last three years. However, over the long term there
is no question about the productivity improvements that our industry is exhibiting.
The recent data may simply be reflecting a slowdown that manifested itself during the
turbulence of the Y2000 transition and the Internet and e-commerce revolutions.

This analysis demonstrates the industry insights that are achievable through the use
of metrics. Some companies already conduct analyses like this within their own
companies, but many others don’t know where they are, where they are headed, and
have no road map to guide their decisions moving forward.

 9

To avoid this fate, establish your own productivity benchmarks and set your process
improvement plan in motion. If you do, it will be possible to see and explain what’s
going on in your take pro-active steps to improve your productivity and set yourselves
ahead of the pack.

About the Author

Doug Putnam is Vice President of Professional Services at QSM, Inc. He
has more than 19 years of experience in the software industry. Mr.
Putnam has written and lectured extensively throughout the world and
has participated in over 100 estimation and measurement
engagements during his career with QSM. He can be reached at
doug_putnam@qsm.com.

 10

 11

	�

